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Abstract

Norovirus (NoV) is a leading cause of acute gastroenteritis and foodborne illness across all age groups. Since its discovery in 1968, research has
been hindered by the lack of a robust in vitro culture system, prompting reliance on surrogate caliciviruses. Recent breakthroughs in NoV culture
models-including human intestinal organoids and zebrafish larvae-now offer physiologically relevant platforms to study viral entry, replication, and

therapeutic intervention.
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Introduction

Norovirus (NoV), a non-enveloped, positive-sense single-
stranded RNA virus of the Caliciviridae family, has a 7.5-7.8 kb
genome organized into three ORFs (Fig.1). ORF1 encodes six non-
structural proteins, including RdRp; ORF2 encodes the major
capsid protein VP1 that assembles into T=3 icosahedral virions for
receptor binding and antigen display; ORF3 encodes minor capsid
protein VP2 that stabilizes virions and facilitates genome delivery.
Replication initiates within replication complexes, generating a
negative-strand intermediate followed by full-length genomic and
ORF 2-3-spanning subgenomic RNAs [1-5].

Norovirus is the leading etiologic agent of non-bacterial
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epidemic gastroenteritis. Human norovirus (HuNoV) is estimated
to cause 685 million infections and 200,000 deaths annually-50,000
of them in children-while imposing US4.2 billion in direct health-
care expenditures and US60 billion in broader societal costs every
year [6, 7]. Although HuNoV gastroenteritis is usually self-limiting,
immunocompromised or immunodeficient populations-infants,
the elderly, and organ-transplant recipients-frequently progress
to chronic infection with severe complications. The absence of a
robust in vitro culture system has severely constrained elucidation
of the viral life-cycle at the molecular level and, consequently, the
development of targeted antiviral therapeutics and vaccines; to
date, neither specific antivirals nor licensed vaccines are available.
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Figure 1: Genomic organization of norovirus.
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HuNoV Research Substitutes
Surrogate Viruses

Despite its high infectivity and ability to replicate to extremely
high titers in the human gut, researchers have extensively explored
sensitive and permissive cell lines for HuNoV, such as human
gastrointestinal epithelial cell lines, but all attempts have failed
[8-11] This failure is attributed to the substantial differences
between laboratory-cultured cell lines and the native human
intestinal environment, which prevent the successful cultivation
and maintenance of HuNoV in vitro. Consequently, researchers have
long relied on surrogate viruses for studies, typically noroviruses
from non-human hosts or other calicivirus species, such as mouse
norovirus (MNV) [11], feline calicivirus (FCV) [12], Porcine Sapporo
virus (PSV) [13], and Turanavirus (TV) [14]. These surrogate
viruses can replicate stably in appropriate cell lines, partially
fulfilling experimental requirements.

MNV can persistently replicate in the mouse macrophage cell line
(RAW264.7), which is widely used to investigate norovirus infection
mechanisms, antiviral therapies, and host immune responses [15,
16]. However, the MNV genome contains an additional open reading
frame (ORF4) compared to HuNoV, meaning findings from MNV
studies cannot be directly extrapolated to HuNoV. For example,
CD300If is an essential protein receptor for MNV infection in mice,
but human CD300If is not a receptor for HuNoV [17]. This indicates
that the infection mechanisms of HuNoV and MNV are distinct.

FCV and PSV are commonly used to evaluate viral resistance
and are of significant value for environmental disinfection products
and pathogen control in food enterprises [18, 19]. The TV genome
structure is highly similar to that of HuNoV and shares the same
host cell receptor-histo-blood group antigen (HBGA)-with HuNoV,
facilitating research on virus-associated receptors and co-factors
[14].

Reverse Genetics and Virus-Like Particles

Since 2002, researchers have attempted to generate infectious
noroviruses and replicons using reverse genetics, achieving their
in vitro propagation. This research direction has greatly advanced
studies on the norovirus replication cycle and its pathogenic
mechanisms [20]. Katayama and Oliveira developed infectious
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recombinant HuNoV and replicons in 2014 and 2016, respectively,
but these were not widely adopted by other p due to their low
efficiency [21, 22]. Reverse genetics systems cannot achieve
indefinite replication cycles, making the improvement of viral
rescue efficiency within finite replication cycles a key focus for
future research.

Additionally, researchers have produced HuNoV virus-like
particles (VLPs) through molecular cloning. These VLPs possess
receptor-binding domains and antigenicity similar to the authentic
virus, allowing them to partially substitute for HuNoV in studies of
antigenic drift and antibody immune responses [23].

In Vitro / Cell Culture Models
B Cell Lines

In 2014, Jones et al. first reported in Science that HuNoV GII.4
could replicate in the human B lymphoma cell line BJAB [24].
Subsequent studies by the same group demonstrated that, with
the assistance of exogenous HBGA, only GII.4 and GIL.6 genotypes
could replicate in BJAB cells, with a 10-50-fold increase in viral load.
However, the progeny virus failed to propagate to subsequent cell
passages [25]. Successful HuNoV infection of primary B cells was
also achieved, showing a replication level comparable to thatin BJAB
cells [26]. Despite being the first cell line reported to support HuNoV
replication a decade ago, only a limited number of laboratories have
successfully reproduced this system, and the underlying cause of its
poor reproducibility remains unclear [27, 28].

Human Intestinal Organoids

In 2016, Ettayebi et al. published the first study in Science using
human intestinal organoids (HIOs) to cultivate HuNoV [29]. Unlike
B cells, HuNoV replication in HIOs does not require exogenous
HBGA and reaches approximately a 3 log, increase, with successful
passage for up to four generations. Infection of GI.1, GIL.3, and GIL.17
strains requires bile, whereas GII.4 infection does not, indicating
genotype-dependent cell tropism. The Estes laboratory extensively
distributed and promoted this system, enabling many groups to
reconstruct it successfully. Over the past eight years, HIOs have
become awidely adopted platform for HuNoV research, contributing
to breakthroughs in understanding viral pathogenesis [30, 31],
antiviral drug development [32] viral environmental stability [33]
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and inactivation [34] as well as neutralizing antibody responses
[35]. Nevertheless, the high cost and technical complexity of the
system have driven efforts to develop more accessible models.

Salivary Gland Cell Lines

Ghosh et al. reported in Nature that GII.4 HuNoV can replicate
continuously in SV40-immortalized human salivary gland cells,
achieving a 3 log10 increase and being successfully passaged four
times [36]. However, this finding has not yet been independently
reproduced in other laboratories, and the specific cellular targets
and cofactors involved in HuNoV replication in salivary cells remain
to be elucidated.

In summary, every new HuNoV cell culture model has been
published in high-impact journals such as Science or Nature,
underscoring the critical and urgent need to establish a robust and
reproducible HuNoV culture system.

In Vivo / Animal Models
Mammalian Models

Extensive efforts have been made to explore various animal
species as potential models for HuNoV infection and propagation.
To date, chimpanzees, rhesus macaques, gnotobiotic pigs, and
cattle have been identified as susceptible hosts [37, 38]. Infected
chimpanzees shed infectious viral particles in their feces, which can
transmit infection to chimpanzee offspring [39]. Rhesus macaques
can be orally infected with both GI and GII genogroups, and while
they mount a specific immune response, viral shedding can persist
for several weeks-longer than in humans, where the virus is typically
cleared within one week [38]. GII.4 HuNoV has also been successfully
passaged twice in gnotobiotic pigs, inducing pathological changes in
intestinal epithelial cells [40]. However, these large-animal models
are costly and require extensive housing facilities, limiting their
utility for high-throughput antiviral screening.

In small animal studies, Taube et al. first demonstrated that
GIL.4 HuNoV can replicate in immunodeficient mice lacking
recombination activation gene 1 or 2 and the common y chain
(Rag-yc-/-), with viral detection in multiple tissues including the
intestine [41]. However, this model has several limitations. Infection
was achieved via intraperitoneal injection rather than the natural
oral route, and infected mice did not shed infectious viral particles.
Moreover, wild-type BALB/c mice failed to show signs of infection.
Intriguingly, HuNoV replication was observed in both humanized
and non-humanized mice, indicating that viral replication depends
on host immunodeficiency rather than the presence of human
immune cells. This model has since been used to evaluate candidate
antiviral drugs against HuNoV infection [27].

Zebrafish Model

In 2019, Van Dycke et al. introduced a smaller and more cost-
effective in vivo model using zebrafish larvae for HuNoV infection
studies [42, 43]. Microinjection of viral suspensions into the
yolk sac of zebrafish larvae enabled replication of GI.7, GII.3, and
GIl.4 genotypes. The yolk sac also supported serial passaging,
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with GIL4 successfully propagated to the third generation.
Immunohistochemistry revealed HuNoV antigens in multiple
organs, including the intestine and liver. Importantly, treatment with
2'-C-methylcytidine (2-CMC) significantly reduced viral replication,
demonstrating the utility of this model for antiviral drug testing.

HuNoV replication in zebrafish larvae has been independently
reproduced in multiple laboratories, highlighting its potential as a
versatile platform for HuNoV research [44-46]. Cuvry et al. found
that HBGA-expressing bacteria had no significant impact on HuNoV
replication in germ-free zebrafish larvae, suggesting that exogenous
HBGA is not required [47]. Tan et al. demonstrated efficient
replication and four successive passages in zebrafish embryos [48].
Kim et al. investigated host gene expression biomarkers during
HuNoV infection [46], and Toh et al. used this model to study
sequential HuNoV-Salmonella infections, revealing a key role of
the ACOD1/IRG pathway [49]. Although the specific target cells and
cofactors for HuNoV infection in zebrafish remain unidentified, viral
replication has only been observed following yolk sac microinjection
at the embryonic or larval stage. The lipid-rich environment of the
yolk sac and bile may act as a cofactor facilitating viral entry.

Potential Intermediate Hosts

Evidence suggests that other animal species may serve as
potential intermediate hosts for HuNoV. Charoen Kul et al. reported
that domestic dogs could act as transmission vectors between
humans and animals [50]. HuNoV genomic sequences have also
been detected in bird feces [51, 52]. Villabruna et al. screened
multiple host species using VLP binding assays and found that
certain HuNoV genotypes could attach to the intestinal tissues of
seven different animal species [53]. These findings support the
hypothesis that HuNoV may circulate in a broad range of animal
reservoirs. However, whether these animals possess permissive
target cells and can be utilized as experimental models requires
further investigation.

Discussion and Prospect

Several limitations in existing HuNoV culture systems must be
urgently addressed to accelerate progress in viral research. First
and foremost, HuNoV cannot be indefinitely passaged in any culture
system, and all research teams rely on clinical specimens containing
the virus (such as fecal suspensions) for infection studies. Therefore,
once the fecal samples are exhausted, the relevant research cannot
continue. Although the aforementioned systems can support viral
replication, their efficiency is far inferior to that of other viral
culture systems, such as the VeroE6/TMPRSS2 cell line used for the
isolation and propagation of SARS-CoV-2 [92].

Secondly, there is currently a lack of high-throughput systems
capable of supporting large-scale antiviral drug screening for
HuNoV, such as the need to screen thousands or tens of thousands
of compounds. While the current culture system is viable for
antiviral screening, even screening small compound libraries (e.g.,
approximately 300 compounds) requires significant effort. This
is primarily due to the system’s near-total reliance on RT-qPCR
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assays to assess HuNoV replication, as HuNoV does not induce
pronounced cytopathic effects in susceptible cells or animals.
Consequently, the cytotoxicity-based drug screening method used
in the VeroE6 cell model for SARS-CoV-2 is not applicable. Although
the zebrafish model is commonly used for screening drugs related
to developmental disorders, in the antiviral field, fish embryos or
larvae are sensitive to most antiviral drugs, leading to developmental
abnormalities. Therefore, it is necessary to exclude potential drug
effects on zebrafish growth during the research process [54].

To overcome these challenges, an efficient HuNoV culture system
must be established. The first step involves identifying HuNoV’s
cellular receptors and co-factors, followed by the generation of
transgenic cell lines and animals overexpressing these receptors
to render them highly susceptible to HuNoV infection. Despite no
successful reports to date, extensive global efforts are underway
to discover HuNoV’s receptors. Second is optimizing the culture
system for large-scale, reproducible application. The vast majority
of laboratories cannot meet the experimental conditions required
for using large mammals such as chimpanzees, rhesus monkeys, or
germ-free pigs. While the zebrafish model offers significant cost-
effectiveness advantages, establishing a zebrafish research platform
requires critical equipment like microinjection systems, along with
specific space and facility requirements for fish housing, often
discouraging many laboratories from pursuing it. Human intestinal
organoids (HIOs) are not only costly but also require fresh human
cells for culture. In contrast, B-cell and salivary cell lines are more
economical, yet their reproducibility, establishment, and reliability
must be rigorously validated. Unfortunately, only two HuNoV
genotypes (GII.4 and GII.6) can be successfully replicated in B-cell
lines, and only one genotype (GIL.4) in salivary cell lines. Achieving
infection and replication of all HuNoV genotypes in in vitro culture
systems is therefore critical. Researchers must continue optimizing
existing models to enhance HuNoV replication efficiency and
passage stability.

Over the past decade, norovirus researchers have made
significant discoveries and gained valuable insights into the
molecular mechanisms of viral infection, antiviral drugs, and
inactivation conditions through novel culture systems like HIO
and zebrafish models. Undoubtedly, HuNoV research has advanced
several steps forward, yet it remains in its infancy. Researchers now
face additional hurdles, such as those mentioned above. Developing
more stable and cost-effective culture models could elevate HuNoV
research to new heights.
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