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Introduction

The intestinal microbiota, one of the densest bacterial 
communities in mammals, plays an important role in health and 
wellbeing of the host. The gut microbiota provides the host with 
essential biomolecules, energy metabolism [1] and has recently 
been found to be the unexplored epicentre of antibiotic resistance 
genes [2]. The balanced bacterial community is mainly dominated 
by obligate anaerobes, Firmicutes and Bacteroidetes due to the strict 
hypoxic nature of the gut. Obligate anaerobes of the intestine break 
down indigestible polysaccharides into short-chain fatty acids 
(SCFA), which are important for the development of the immune 
system and hence, vital in maintaining homeostasis. Changes in the 
gut bacterial composition due to e.g. antibiotic (AB) treatments have 
been shown to lead to both selection of microbes with high energy 
harvesting capacity that may contribute to obesity and an imbalanced 
microbiota, termed dysbiosis. This is associated with an expansion 
of facultative anaerobes, Proteobacteria in response to an increase 
in epithelial oxygenation [3-5]. A shift of the luminal bacterial  

 
composition from obligate to facultative anaerobes is associated 
with inflammation and propagates expansion of pathogens via 
aerobic respiration [6] as well as commensal Escherichia coli [7]. 
Potentially, E. coli may carry clinically relevant AB resistance genes 
on highly transmissible mobile elements and hence increases the 
risk of spreading AB resistance genes [Lamaudiere and Morozov 
personal communication]. These independent studies suggest a 
pleotropic effect of AB on the composition of the human gut with 
respect to obesity, dysbiosis, infection and the immune system. A 
more tailored approach to the use of AB in a clinical setting should 
be considered, a view that could pave the way to the development 
of novel preventative initiatives for human gut associated disease.

Discussion
Anaerobic environment of the healthy mammalian gut governs 

the bacterial composition and promotes a dominance of obligate 
anaerobes which constitute around 95% of the total community 
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Abstract 

A healthy gut microbial community is essential for homeostasis in mammals. A symbiotic relationship between host and microbe 
is essential in developing the immune system, providing biomolecules and generating energy through utilisation of indigestible 
compounds. The diversity of the gut microbiota is altered following antibiotic treatments, the effect this has on the health and 
wellbeing of the host has long been underestimated and is now the subject of intense debate. Antibiotics facilitate the selection of 
energy harvesting microbes within the gut and hence heavily influence the gaining of weight and may be contributing more than we 
anticipated to the modern obesity epidemic. These changes to the bacterial composition of the gut, dysbiosis are caused by elevated 
oxygen levels within the gut that promotes the propagation of facultative anaerobic Proteobacteria, a condition associated with 
inflammation and cancer. Additionally, the altered oxygenated intestinal climate allows the growth of aerobic pathogens, conveying 
clinically relevant resistance genes on highly transmissible mobile elements between communities or acquiring them from 
commensal bacteria, in turn aiding the spread of antibiotic resistance. Here we discuss the indirect pleotropic effects antibiotics 
have on the microbial community and environment of the gut leading to hidden adverse implications to human health.
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[8]. They deplete intestinal oxygen via β-oxidation of microbiota-
originated butyrate to CO2, the main pathway of energy production, 
which is vital for the hosts immune system. A disruption of 
anaerobiosis due to AB treatment leads to an increased oxygenation 
of the colon and therefore dysbiosis, an expansion of facultative 
anaerobic Proteobacteria via aerobic respiration [4,5]. Dysbiosis 
allows energy to be obtained through anaerobic glycolysis, glucose 
to lactate [9], that does not require oxygen, leading to increased 
epithelial oxygenation [10]. This in turn enables an expansion of 
facultative anaerobes, including commensal and pathogenic E. coli. 
This can result in a number of consequences as it increases the 
risk of aerobic pathogens colonizing the gut [6] and predisposes 
individuals to a number of diseases, including cancer via the 
activation of pro-inflammatory responses of the immune system 
[11,12]. E. coli constantly produce ethanol, enhancing permeability 
of the colon. This decreases the defence mechanisms of the host 
against bacteria-driven toxins such as dimethyl arsine, which is 
metabolized by E. coli to produce micro metabolites, potential 
carcinogens of the gut [13]. Furthermore, an expansion of E. coli 
in healthy livestock in response to AB pressure has recently 
been found to carry mobile elements with highly transmissible 
resistance determinants. For example, mrc-1 and mcr-2 alleles 
confer resistance to last resort AB, i.e. colistin and multi-drug 
efflux pumps, e.g. oqxAB confers resistance to quinolones, AB of 
the first choice [14,15]. This significantly reduces the choice of 
treatment of infections as well as increasing the risk of spreading 
resistance within the gut microbiome and beyond. Therefore, AB 
treatment of infection-free individuals must be considered as high 
risk, facilitating the emergence and transfer of mobile resistance to 
human pathogens.

Obesity and dysbiosis

The common view-point that genetic disposition or dietary 
habits heavily influence weight gain is contradicted in light of 
recent data [16]. The enrichment of the microbiome with energy 
harvesting bacteria elucidates the role of the gut microbiota in the 
gaining of weight leading to obesity. Recent data has shown that 
changes in animal gut microbiota in response to AB treatment 
resemble the microbiota of obese humans/animals without 
any dietary alterations [3,17]. Equally, weight gain in humans, 
both adults and children [18] has been observed with some AB 
however, effects on health have been disregarded until recently. 
An AB dependent selection of both methanogenic Archaea and 
Prevotellaceae spp together as a novel biomarker of obesity in 
humans and animals has been recently reported. During the 
fermentation process by Prevotellaceae the accumulation of excess 
H2 reduces the yield of ATP, which leads to a gradual increase in 
the fermentation process itself [19]. The methanogenic Archaea are 
believed to not only have a role in obesity through promoting caloric 
intake from indigestible polysaccharides [20,21], but in addition 
an increase in Prevotellaceae, can utilise the excess H2 generated 
by acetate production, a highly absorbed SCFA [22]. Additionally, 
Escherichia spp are responsible for increasing intestinal 
permeability, leading to more efficient absorbance of calories 
[23]. Furthermore, the animal gut microbiota treated with AB is 
enriched with Erysipelotrichaceae, bacteria that produce butyrate, 

another major SCFA source, an excess of which contributes to 
obesity [24]. Findings strongly argue that the bacterial community 
of the obese gut is more efficient in extracting calories from 
food than in a healthier bacterial counterpart and becomes less 
efficient as the host loses weight, being self-perpetuating through 
the propagation of bacteria more suited to an obese state. This is 
consistent with reports that the bacterial gut microbiota of normal 
mice transplanted into germ-free rodents leads to an increase in 
the body fat of recipients without any increase in food intake [25]. 
Hence, AB should be considered as an important contributor to 
energy consumption and obesity-preventative programmes should 
be made an integral part of AB treatment protocol.

Immune disorders 

The symbiosis between the immune system and the anaerobic-
dominant gut microbiota governs the anaerobic intestinal 
conditions, being a key determinant in preventing pathogen 
colonization. Hypo responsive CD4+ T cells ensure a tolerogenic 
response to the balanced microbiome via interleukin-10 (IL-10), 
an anti-inflammatory cytokine, aiding the maintenance of the 
anaerobic intestinal environment [26]. Consequently, a number 
of gastrointestinal diseases, e.g. inflammatory bowel disease, 
which encompasses ulcerative colitis and Crohn’s Disease are 
associated with a pro-inflammatory immune response e.g. IL-17 
and IL-23 that sustain an inflammation environment in the tumour 
[27]. Subsequently, this leads to the selection and propagation 
on facultative anaerobes, elevating oxygen levels within the gut, 
dysbiosis through depletion of obligate anaerobes such as Clostridia 
(phylum Firmicutes), compromising intestinal homeostasis [28-
30]. The gut microbiota can both protect against and promote the 
development of Colorectal cancer. The gut Bacteroides fragilis (class 
Clostridia) are known to induce regulatory T cells (T-reg) and anti-
inflammatory cytokines. B. fragilis produce polysaccharide A which 
promotes T-reg development and the clostridial species produce 
butyrate, the SCFA which stimulates extrathymic differentiation 
of T-reg and IL-10-producing T-cells that protect against intestinal 
inflammation [26,31,32]. Additionally, dysbiosis is sufficient to 
induce tumorigenesis and leads to increased colon permeability, 
therefore facilitating the access of mutagens (H2S, NO, Reactive 
Oxygen Species and toxins) to colon epithelial cells this, in turn 
leads to DNA damage [33,34]. Understanding the mechanisms by 
which the gut microbiota modulates the immune system and hence 
promotes cancer will lead to the development of novel preventative 
and therapeutic approaches in stemming intestinal tumorigenesis 
[35].

Conclusion
A broad spectrum of human disease, including obesity, intestinal 

inflammation, infection and cancer appears to be tightly modulated 
by the composition of microbes dwelling in the gut. A disruption 
of the hypoxic intestine by environmental cues, e.g. AB or disease, 
changes the population of the gut microbiota, enabling facultative 
anaerobes to support and perpetuate luminal dysbiosis. This 
increases human susceptibility to disease and sustaining a diseased 
state, hence diminishing effectiveness of treatments. Elucidating the 
mechanisms by which the gut microbiome modulates human health 
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and diseases will mark a paradigm shift in our understanding of 
the importance of developing personalised preventative medicine. 
This will include development of fundamentally novel and long-
term strategies to control the disease (preventing dysbiosis and the 
spread of AB resistance, facilitating weight loss and coordination of 
the immune system) via manipulating the composition of the gut 
microbiota.
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