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Abstract 
This review article summarizes the key evolution in weather forecast from Empirical Forecast to Artificial Intelligence (AI) Forecast over 

the years and discuss some opportunities and challenges of AI for effective applications over the next generations. While AI offers clear benefits 
in weather forecasting, challenges remain in data quality, interpretability, and integrations with operational systems. The paper highlights the 
importance of international collaboration through organizations such as the World Meteorological Organization (WMO) and Typhoon Committee 
(TC) to strengthen cooperative research in AI applications. Moreover, the role of human forecasters remains indispensable, particularly in 
interpreting AI outputs, ensuring reliability, and communicating forecasts effectively to decision-makers and the public. Together, human expertise 
and AI innovations promise a more resilient and adaptive forecasting framework for reducing disaster risks in the era of climate change. Recent 
advances in AI have transformed tropical cyclone forecasting by enabling faster, more accurate predictions based on vast datasets.
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Watersheds of Weather Forecast

Era of Astral Bodies Observation and Empirical Forecast

People have attempted to predict the weather for thousands 
of years. Ancient weather forecasting methods usually relied on 
observed patterns of events, also termed pattern recognition. The 
Sun, Moon, stars and shape of clouds are essential indicator for  

 

weather forecast. For example, it was observed that if the sunset was 
particularly red, the following day often brought fair weather. This 
empirical experience accumulated from generations to generations. 
Aristotle described weather patterns in ‘Meteorologica’ about 350 
B.C [1].
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Era of Meteorological Instruments and Modern Weather 
Forecast

The accurate measurement of rainfall was important for ancient 
agricultural society. In this background, the Great King Sejong in 
the Joseon Dynasty (1392-1910, Korea) and a group of scientists 
invented the rainfall gauge, known as “Cheugugi (prototype of 
modern rain gauge)” in 1441 [2, 3] [Figure 1]. From 16th to 17th 
centuries, several European scientists developed various type of 
meteorological instruments. Galileo Galilei (Italy) in 1603 developed 
“Galileo thermoscope” known as the first type of thermometer 

[4]. Furthermore, the “mercury barometer” known as the earliest 
barometer, was created by Evangelista Torricelli (Italy) in1643. The 
three main observational instruments are used for measuring key 
factors of weather forecast - rain gauge (water), thermometer (air 
temperature), barometer (air pressure), respectively [5]. In 1854, 
Le Verrier, he produced the first weather chart using a network 
of meteorological observations and the telegraph, playing a key 
role in advancing the transition from the era of meteorological 
instruments – rain gauge, thermometer, barometer, etc – the era 
modern weather forecasting [6]. 

Figure 1: Cheugugi, the world’s oldest rain gauge devised in the Joseon Dynasty in 1441. Adapted from Lee et al. (2024) [2].

Era of Numerical Weather Prediction

The evolution of weather forecasting has been closely tied to 
advances in science and technology. During the World WarIand II, 
the strategic necessity of accurate forecasts highlighted the value 
of systematically collecting meteorological observations across 
Europe, facilitated by emerging telecommunication networks. This 
context gave rise to the idea that machines, and later computers, 
could be employed to process observational data for predictive 
purposes. In 1922, English scientist Lewis Fry Richardson 
published “Weather Prediction by Numerical Process” [7]. The 
joint team composed of meteorologists and applied mathematician 
from America and Norway, performed the first computerized 
weather forecast in 1950 [8]. Practical use of numerical weather 
predictions (NWPs) began in 1955 [9] spurred by the development 
of programmable electronic computers. Building upon this idea, 
successive innovations – including radar, satellite observations, and 
high performance supercomputing – have progressively extended 
the scope and accuracy of forecasting. Today, these developments 
enable predictions on a global scale, ranging from very short range 
forecast (VSRF, approximately 3~6 hours) of a few days to long-
term climate projections. 

A Summary of AI History and Recent Extraordinary 
Progress in AI Weather Forecast

The concept of AI had born since 1940s. The scientists from a 
variety of fields, for example mathematics, physics and engineering, 
investigate the theoretical possibility of “machine intelligence”. The 
term “Artificial Intelligence (AI)” was firstly introduced by John 
McCarthy at the Dartmouth workshop in 1956 [10]. However, the 
AI research field experienced the “First AI winter (1974–1980) 
and Second AI winter (1990s)”. The AI researcher’s contribution 
had underestimated and wane that periods [11]. The DeepMind 
Challenge Match in 2016, was a pivotal event in history of AI. This 
match was known as the “Go match between Top class Go player Lee 
Sedol (Korea) and AlphaGo, a computer Go AI program” developed 
by DeepMind, played in Seoul, Korea between the 9th and 15th of 
March 2016. The Go is a kind of board game. Finally, Lee Sedol won 
one game but AlphaGo won four games. This match was broadcast 
in four language (Korean, Chinese, Japanese, and English) and was 
watched millions of people worldwide. With this match, AI became 
very popular and proved to be a breakthrough technology in the 
world [12]. This match was known as the advent of AI for public 
use.
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One year after, the transformer architecture developed Google 
DeepMind widely adopted generative AI applications such as high 
impact weather forecast, biology and disaster risk reduction, 
etc. In 2017, the transformer architecture was proposed by 
Google researchers in a paper titled “Attention Is All You Need”. 
It exploits a self-attention mechanism and became widely used 
in large language models [13]. The new AI era began since 2020, 
with the public release of scaled large language models (LLMs) 
such as ChatGPT developed by OpenAI [14]. The Royal Swedish 
Academy of Sciences awarded Nobel Prizes in recognition of 
ground breaking contributions to AI both Physics (John J. Hopfield, 
Princeton University and Geoffrey Hinton, University of Toronto) 
and Chemistry (David Baker, University of Washington, and Demis 
Hassabis, John M. Jumper, Google DeepMind) in 2024 [15]. Initial 
attempts of AI to apply for weather forecast began in the 2010s. 
Global Big Technology and NMHS (National Meteorological and 
Hydrological Service) agencies are developing AI within the past 
two to three years [16]. 

a.	 NVIDIA’s FourCastNet introduced Operator Learning 
techniques, leveraging Physics -Machine Learning [17,18], 
while 

b.	 Huawei Cloud’s Pangu-Weather presented a conceptually 
robust approach with 3D Earth-specific transformer (3DEST) 

capable of processing three-dimensional data directly [19,20], 

c.	 Google DeepMind’s GraphCast, employing the Graph 
Neural Network (GNN), maintained spatial and vertical 
resolution parity with ERA5 [21,22], 

d.	 the Shanghai AI Laboratory’s FengWu model enhanced 
long-term prediction performance through variable-specific 
independent processing tailored to atmospheric variable 
characteristics [23], 

e.	 Microsoft’s ClimaX stands as an integrated model capable 
of both short- and long-term forecasting as well as climate 
prediction, with applications spanning global, regional, and 
high-resolution domains [24],

f.	 FuXi, developed by Fudan University in China, achieved 
leading performance in extended-range forecasting, reaching 
up to 15 days, by independently handling prediction in three 
segments: 0~5, 5~10, and 10~15 days [25], and 

g.	 European Centre for Medium-Range Weather Forecasts’ 
Artificial Intelligence/Integrated Forecasting System (ECMWF’s 
AIFS) incorporates an attention-based GNN by merging the 
characteristics of GraphCast’s GNN with Transformers [26]. 
Table 1 summarize the key characteristics of AI.

Figure 2: Go match between Top class Go player Lee Sedol and AlphaGo, a computer Go AI program [12].

Table 1: Characteristics of global AI models. Adapted from Table 1 in Kim et al. (2025) [16].

Model 
Feature ①FourCastNet ②Pan-

gu-Weather ③GraphCast ④FengWu ⑤ClimaX ⑥FuXi ⑦AIFS IFS

Company NVIDIA Huawei Google Deep-
Mind

Shanghai AI 
Lab. Microsoft Fudan Univ. ECMWF ECMWF

Model Source O Δ Δ Δ O O X -

Checkpoint O O O O O O X -

NN Model AFNO, SFNO Swin-TF, 
3DEST GNN Cross-modal 

TF ViT U-Transformer Att-GNN NWP

Forecast 7 days 7 days or 
longer 10 days 10 days day, mon, yr 5, 10, 15 days 10 days 10 days

Horizontal 
Resolution

0.25o (720 × 
1440) 

8 × 8 patch

0.25o (721 × 
1440) 

4 × 4 patch

0.25o (721 × 
1440) 

multi-mesh

0.25 o (721 × 
1440)

5.625o (32 × 
64), 

1.40625 o 
(128 × 256)

0.25 o (721 × 
1440)

1o -> 0.25o 
(721 × 1440)

9 km 
(HRES)
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Vertical Reso-
lution 4 press levels

13 press levels 
+ 

1 surface

13, 37 press 
levels

13, 37 press 
levels 7 press levels 13 press levels 13 press 

levels 137 levels

Time interval 6 hr 1, 3, 6, 24 hrs 6 hr 6 hr
6 h, {1, 3, 5, 

7} d, 
2 w, 1 m

6hr 6hr 1 hr

Variables t2m,mslp,pc, 
t,u,v

t2m, uv10, 
mslp, 

t,z,r,u,v

z,pc,t-
2m,uv10, 
mslp,rad, 
tzquvw

t2m, uv10, 
mslp, t,z,r,u,v

t2m,uv10,lsm, 
t,z,q,r,u,v

z,r,t,u,v,tp, 
msl, …

z,t,u,v,w,r,p, 
t2m, uv10, … *

Number of 
variables 26 69 227 189 48 70 (=13*5+5) 92 

(=13*6+14) > 1380

Trained data ERA5 ERA5 ERA5 ERA5 CMIP6, ERA5 ERA5 ERA5, HRES -

References

Pathak et al. 
(2022) 
Bonev  

et al. (2023)

Bi et al., 
(2022, 2023)

Lam et al., 
(2022, 2023)

Chen et al. 
(2023a)

Nguyen et al. 
(2023)

Chen et al. 
(2023b)

Lang et al. 
(2024) -

Such models use no physics-based atmosphere modeling or 
large language models. Instead, they learn purely from data such as 
the ECMWF re-analysis ERA5 [27]. These models typically require 
far less compute than physics-based models [16]. Results showed 
[Figure 3] that Google’s GraphCast, called GenCast, provided 
the most accurate 7-day track forecasts, while model ECMWF 
Integrated Forecast System (IFS) most accurate of intensity, 
indicating a need for improvement in 2024 [28]. Many studies 
have reported that AI models can perform as well as, or in some 
cases outperform, conventional NWPs for medium-range forecasts 
of up to five days. Nevertheless, AI continue to reveal weakness in 

predicting extreme phenomena that the relatively rare and rapidly 
intensify, for example, Rapid Intensification (RI) of tropical cyclone 
and highly localized mesoscale deep convection clouds (DCCs). The 
limitation arises because AI largely depend on historical statistics. 
When extreme events are underestimated in the training data, the 
resulting forecasts often fail to capture them accurately. In order to 
supplement the lack of training data for AI, target observational field 
campaign offers a path toward more accurate AI forecast [29,30]. 
Many low orbit and Geostationary Satellite data have been applied 
tropical cyclone intensity analysis, although further progress of 
intensity prediction based on satellite remains necessary [31]. 

Figure 3: GenCast hurricane forecast test (on courtesy of Price et al., 2024) [28].
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Opportunities and Challenges of AI

Recent advancement in AI weather forecast have demonstrated 
the potential to complement, and in some cases even substitute, 
traditional physics-based grid NWPs and human forecast. AI-based 
forecasting systems provide several notable advantages.

a.	 Speed and efficiency

AI models can issue forecasts rapidly, enabling more frequent 
updates in response to fast evolving weather conditions.

b.	 Enhanced decision support

Certain AI models exhibit accuracy comparable to NWP, 
improving timely decision-making for weather.

c.	 Error reduction

Automated forecasts reduce reliance on subjective human 
interpretation and minimize operational error.

d.	 Continuous availability

Unlike human forecasters, AI forecaster can operate without 
interruption, offering particular appeal in minimizing the burden 
overnight shifts forecasting duties in NMHS and private weather 
companies in the world.

Prof. Hinton expressed concerns about the dangers and risk 
of AI in several interviews [32, 33, 34]. AI weather forecast also 
present significant challenges. In the field of weather forecasting, 
several critical issues warrant close consideration:

a.	 Lack of interpretability

Unlike human forecast and NWPs, which provide forecasts 
accompanied by physical explanations. AI often lack sufficient 
interpretability to explain why a given prediction was made.

b.	 Extreme events and long-term prediction

Extreme weather events, for example, RI and DCCs and forecast 
on long-term times scales such as, seasonal prediction of tropical 
cyclone remain particularly challenging, requiring substantial 
further research.

c.	 Fundamental scientific concerns

Since weather forecasting is fundamentally based on the fluid 
dynamics, it remains uncertain whether AI can fully capture the 
inherent uncertainties and irreversibility of atmospheric and 
oceanic flows. 

d.	 Accountability

Finally, questions of accountability arise when AI-driven 
forecast errors lead to significant loss of life or property damage – 
responsibility in such cases remains unclear.

Future Direction and Recommendation

 AI has shown remarkable promise in advancing the science and 
practice of weather forecasting. While it offers advantages - speed, 
efficiency, and operational flexibility but critical limitations remain 

in interpretability, extreme event prediction, and accountability. To 
solve these problems

a.	 Research into explainable AI (XAI) aims to provide 
physical insights into AI predictions, bridging the gap between 
statistical accuracy and scientific understanding. 

b.	 The inclusion of synthetic data, extreme event 
augmentation, and coupled climate model simulations could 
help improve AI performance in predicting rare or unexpected 
phenomena.

c.	 Integrating AI with NWP – such as using AI for bias 
correction, data assimilation, or parameterization – offers a 
pathway to robust, physically consistent forecasts. 

d.	 Clear guidelines on accountability, transparency, and 
operational use of AI forecasts are essential before full scale 
adoption. Collaboration among meteorological agencies, AI 
developers, and policymakers will be critical. 

e.	 As Climate Change intensifies the frequency of 
unprecedented extremes, AI models must adapt to non-
stationary conditions. Developing models that remain reliable 
under shifting climate regimes will be a central challenge.

Future progress will likely rely on hybrid approaches that 
combine physical understanding with data-driven AI. With 
further research and careful integration into operational systems, 
AI may not only complement but also transform the future of 
meteorological forecasting. Furthermore, the development and 
application of AI forecasting systems can be pursued supporting 
with international collaboration is essential, particularly given 
the global nature of weather and climate systems. WMO and UN 
ESCAP/WMO Typhoon Committee provide established frameworks 
for cooperation. Their leadership in data sharing, standardized 
evaluation protocols, and joint capacity-building can ensure that 
AI-driven forecasting benefits are equitably distributed across 
both developed and developing countries. Such coordinated efforts 
are crucial for tackling transboundary weather hazards, where 
collective preparedness, shard expertise, and cooperative decision-
making can significantly reduce societal and economic risks. By 
embedding AI development within a framework of international 
collaboration, the global meteorological community can accelerate 
innovation while ensuring fairness, resilience, and sustainability in 
weather and climate services.

Finally, AI forecast provides powerful new technology and 
it should be regarded as complement rather than a replacement 
for human forecasters. Human meteorologists bring critical 
expertise in interpreting AI outputs, integrating local knowledge, 
communicating uncertainty, and making context-sensitive 
decisions- particularly during extreme and unprecedented events. 
The future of weather forecasting will therefore depend not on 
AI alone, but on a synergistic partnership between advanced AI 
systems and skilled human forecasters, supported by international 
collaboration. Such as integrated and harmonized approach will 
enhance both the scientific robustness and the societal value of 
forecasting in an era of growing climate risks. 
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