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Abstract 
Reliable flood forecasting is crucial for minimizing infrastructure damage and fatalities. Utilizing multiple independent peak flow observations 

throughout the year, rather than solely relying on the annual maximum, can enhance flood estimation accuracy. Some studies have incorporated 
the partial duration series (PDS) alongside the annual maximum flood (AMF) to better estimate floods across the United States. With wet years 
expected to become wetter, independent high flow events within wet years may surpass the AMF of dry years. Given that global climate warming 
can exacerbate flooding, integrating several independent peak flow observations with the AMF could address nonstationarity in flood analysis more 
effectively.

We applied two common univariate distributions, namely Log Pearson Type III (LP3) and Generalized Extreme Value (GEV), to fit the AMF and 
PDS data. However, a high correlation between observed and estimated flood quantiles could potentially mislead us into confirming the reliable 
performance of LP3 or GEV. Therefore, in addition to conducting goodness-of-fit tests, we introduced the ratio (R) of observed to estimated flood 
values to provide a better evaluation of distribution performance. When R fell below one, it indicated that estimated floods equaled or exceeded the 
observations, suggesting reliable performance. Conversely, when R exceeded one, the distribution did not perform reliably.

Our study demonstrated regional improvements in estimating floods with return intervals ranging from two to 400 years when LP3 or GEV 
were fitted to the PDS rather than the AMF. We examined both reference and non-reference sites across the U.S. with over 100 years of AMF data. 
We found that LP3 performed reliably for two-to-10-year floods, regardless of whether it was fitted to the AMF or PDS. However, the GEV showed 
better performance in estimating high flood quantiles ranging from 50 to 400 years when fitted to the PDS. The findings of this research have 
significant implications for enhancing the sustainable design of infrastructure, particularly for non-reference sites experiencing both climate change 
and anthropogenic disturbances.
Keywords: NONSTATIONARITY IN PEAK FLOW; PARTIAL DURATION SERIES (PDS); ANNUAL MAXIMUM FLOOD (AMF); LOG PEARSON TYPE III 
(LP3); GENERALIZED EXTREME VALUE (GEV); UNITED STATES

Introduction

Minimizing the risk of infrastructure damage and fatalities 
from flooding requires reliable estimates of flood quantiles [1-  

 

6]. Achieving reliable flood estimation remains a challenge in the 
era of nonstationary climate and anthropogenically manipulated 
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watersheds that have experienced land use/cover change, water 
diversion, and/or damming [7-9]. In nonstationary conditions, 
every unit change in climate or anthropogenic disturbances 
necessarily does not correspond to a unit change in peak flow 
[10-15]. Hence, considering multiple independent peak flow 
observations throughout the year, alongside the annual maximum, 
can improve flood estimation accuracy [16, 17].

Limited studies have incorporated the partial duration series 
(PDS) alongside the annual maximum flood (AMF) to estimate 
flood quantiles across the U.S. [18-23]. With wet years expected to 
become wetter [24, 25], a second or subsequent larger flow in a wet 
year can easily surpass the AMF in a dry year [26, 16]. Combining 
several independent flooding events per year with an AMF is likely 
to enhance flood quantile estimates, both at high and low ends, 
depending on the degree of watershed disturbance [19, 26-30].

Several studies have distinguished between reference and 
nonreference gauging stations on flood analysis across the U.S. 
[31-33, 30, 34]. Reference stations measure streamflow within 
minimally disturbed watersheds, while nonreference stations 
are located within watersheds with regulated streams, manmade 
reservoirs, water withdrawal, and/or changes in land use/cover. 
Studying peak flow at reference sites provides insight into how 
climate variation and change may affect flood quantile estimates. 
Conversely, the peak flow information of nonreference sites helps 
demonstrate how flood estimates may change under concurrent 
influences of changing climate and anthropogenic disturbances 
[35, 36].

The Log Pearson Type III (LP3) has been widely recommended 
as a suitable statistical distribution for analyzing flood frequency 
across the U.S. [37, 7, 26, 38, 39]. The LP3 distribution typically 
utilizes the AMF as an input [40- 42, 29]. However, as mentioned 
earlier, flood quantile estimates with LP3 fitted to the AMF 
sometimes fail to capture all observed peak flows. In such cases, 
using a PDS with the Generalized Extreme Value (GEV) distribution 

may offer improved flood quantile estimates [19, 23, 16, 27, 30].

In the following study, we aim to accomplish two main 
objectives: 1) develop a PDS using daily streamflow data for sites 
with more than 100 years of AMF records, and 2) demonstrate 
that the GEV distribution combined with the PDS yields better 
performance than the LP3 distribution with AMF for estimating 
flood quantiles. The reliability of flood analysis can vary 
geographically between reference and nonreference sites. We 
constructed PDSs for 24 reference and 75 nonreference sites across 
the U.S., each having more than 100 years of AMF observations. 
LP3 and GEV distributions were fitted to both the AMF and PDS to 
estimate floods with return periods ranging from two to 400 years. 
This study emphasize the advantages of incorporating the PDS into 
flood forecasting alongside the AMF, particularly for reference sites 
compared to nonreference sites. The findings of this research hold 
significant potential for enhancing the sustainable design of water 
infrastructures for regions undergoing both changing climate and 
anthropogenic disturbances.

Materials and Methods

LP3 and GEV are extensively utilized statistical distributions for 
estimating flood quantiles [17, 29]. The distribution parameters can 
be computed using either product or linear moment methods [43]. 
Typically, the parameters of the LP3 distribution are approximated 
using the product moment method, while those of the GEV 
distribution are estimated using the linear moment method [41]. 
In this study, we followed the LP3 and GEV formulations outlined 
by [44], which are briefly summarized in this section. We employed 
station-based skewness without applying any regional correction 
and developed an “R” code to compute LP3 and GEV distribution 
parameters.

Log Pearson Type III (LP3)

The Probability Density Function (PDF) of LP3 distribution can 
be expressed as follows:
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The descriptive statistics of peak flow observations, including the mean ( ˆXµ  , first moment), variance ( 2ˆ Xσ  , second moment), and 
skewness ( ˆXγ , third moment) (Eq. 2), are used to calculate the distribution parameters of shape (α ), scale ( β ), and location (ξ  ):
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Subsequently, the flood quantiles will be estimated as follows: 

http://dx.doi.org/10.33552/AHM.2024.01.000523


Citation: Rouzbeh Berton* and Vahid Rahmani. Improving Low-Frequency Flood Estimation Using the Partial Duration Series Instead of the 
Annual Maximum Across the United States. Adv in Hydro & Meteorol. 1(5): 2024. AHM.MS.ID.000523. 
DOI: 10.33552/AHM.2024.01.000523

Advances in Hydrology & Meteorology                                                                                                                             Volume 1-Issue 5

Page 3 of 14

( )p Q Q P QX Kµ σ γ= +  where Eq(4)

2 2
2 2, , ,

1 2 1
r r

Q Qe e E Q e
r

α α α
ξ ξ ξβ β β βµ σ

β β β β

         = = − =         − − − −         

( )
3 2 3 2

3

3 2 2 2, 1
6 36

Q Q Q P Q
Q P Q

Q Q Q

E Q E Q Z
K

µ µ γ γ
γ γ

σ γ γ

   − +     = = + − − 
  

PZ corresponds to the Pth quantiles of the standard normal distribution, numerically estimated by the following equation:
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The goodness of fit is verified using the Blom empirical probability formula [45]:
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where 1i =  corresponds to the greatest observation ranked and “n” is the total number of peak flow observations. When the plot of 
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=  falls on the 1:1 line, LP3 reliably estimates flood quantiles [29].

Generalized Extreme Value (GEV)

The GEV distribution is represented by the following Cumulative Distribution Functions (CDF):
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where X represents sorted observations from largest to smallest. The three L-moment estimators of ( )1̂ kλ  , ( )2̂ kλ , and ( )3̂ kλ  can 
be calculated as follows:

  where Eq. (8)
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Then the flood quantiles are computed by GEV distribution: 
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The visual goodness-of-fit test is developed by plotting ˆ
ipX against the peak flow anomaly i

i
X

X XZ
σ
−

= fallen on the 1:1 line with the 
best fit [29]. The term is computed using Cunnane’s empirical probability [46]:
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where 1i =  for the greatest observation.

Data

Annual maximum flood (AMF)

Among 9,067 USGS gauging stations, we selected 99 stations 
that have more than 100 years of AMF information. Using data 
from the “Hydro-Climatic Data Network” (HCDN or Gages-II) [47], 

we classified 24 sites as reference sites situated in undisturbed 
watersheds, while the remaining 75 were categorized as 
nonreference sites located in disturbed watersheds. Reference 
sites experience minimal or no anthropogenic disturbances, 
whereas nonreference sites exhibit varying levels of land use/cover 
change, river regulation, and/or reservoir construction [48]. The 
geographical distribution of stream gauges is illustrated on Figure 1, 
with additional detailed information about the study sites provided 
in supplementary materials Table S1. Daily streamflow and peak 
flow data were obtained from the USGS National Water Information 
System (NWIS) data repository using the “dataRetrieval” [49] and 
“dplyr” [50] packages developed in “R.”

Figure 1: Geographic locations of reference (green circle) and nonreference (red circle) sites throughout the contiguous United States. The 
numbers are correspondent to the “ID” column in supplementary materials in Table S1. The hydrologic units (HUC02) were defined by USGS.
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Partial duration series (PDS)

The PDS comprises several high flow events rather than just 
the largest peak flow of each year [16].To ensure compliance with 
the AMF assumption, it is essential that the selected floods are 
independent [21]. Developing a PDS from daily mean streamflow 
data is somewhat subjective. However, as long as the selected 
peaks represent independent floods and the selection process 
does not impose too many restrictions [51], can serve as a reliable 
representation of flood peaks in the region.

In this study, we initially selected flows greater than the minimum 
peak flow reported in the AMF. Subsequently, we identified the 
absolute and relative maximums. The final step involved assessing 
the independence of these maximums. We utilized temporal 
independence criteria proposed by [26], considering events spaced 
at least five days apart plus the natural logarithm of drainage area 
in square miles, as independent flooding events. The length of PDS 
records for each site is detailed in supplementary materials Table 
S1. On average, the PDS contained at least five floods in addition to 
the annual maximum.

Results and discussions

Performance of LP3 and GEV

The performance of a statistical distribution in estimating 
flood quantiles is assessed through a goodness-of-fit test [29]. 
When either an LP3 or GEV distribution was fitted to the AMF 
or PDS, Pearson cross-correlation indicated how accurately the 
distribution estimated floods with different recurrence intervals. 
Figure 2 depicts two flood frequency models and the goodness-of-
fit plots for the Connecticut River at Montague City, Massachusetts 
(USGS 01170500). While both LP3 (Figure 2a) and GEV (Figure 2b) 
exhibited reliable performance, as evidenced by high correlation 
coefficients, both distributions missed a few low-frequency floods. 
This occurred because the goodness of fit primarily evaluated the 
relative performance of the LP3 or GEV, assigning less weight to 
the upper and lower tails of the distributions [52]. Therefore, the 
goodness-of-fit test was supplemented by the ratio (R) of observed 
to estimated floods to provide a more comprehensive evaluation of 
the performance of statistical distributions.

Figure 2: Flood frequency curves and goodness-of-fit developed for the Connecticut River at Montague City, MA (USGS 01170500): a) LP3 
was fitted to AMF and PDS. The two plots on the right indicated correlation between observed and estimated flood quantiles for LP3 fitted to 
AMF (blue circles) and PDS (red circles). b) Similar to a) but for GEV.
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When the ratio fell below one, the distribution performed 
reliably, indicating that the estimated floods exceeded the 
corresponding observations. Conversely, a ratio greater than 
one indicated underestimated flood quantiles, suggesting poor 
performance of the distribution. We compared the performance of 
LP3 and GEV with both AMF and PDS at reference and nonreference 
sites for floods with return periods ranging from two to 400 years. 
However, in case where either LP3 or GEV performed well with 
both AMF and PDS, preference should be given to AMF data over 
PDS, as the development process of a PDS series was subjective.

Two-year flood

LP3 performed well in estimating a two-year flood event with 

both AMF and PDS information (Figure 3a and Table 1). For regional 
flood analysis in the Northeast and Pacific Northwest, considering 
the increase in high-frequency flooding prompted by sea-level rise 
[53, 54], using GEV with PDS provided better quantile estimates 
than AMF. However, for the Upper Colorado and northeast of 
the Great Basin, LP3 outperformed GEV (Figure 3a). Since LP3 
demonstrated similar performance with both AMF and PDS, AMF 
usage was preferred (Table 1). Overall, GEV reliably estimated a 
two-year flood with PDS information. The distinction between 
reference and nonreference sites did not affect the performance of 
LP3, while GEV was sensitive to the conditions of the study sites 
(Table 1).

Table 1: The ratio (R) of observed peak flows to the corresponding flood quantiles (Obs/Est) estimated by LP3 and GEV distributions for reference 

and nonreference sites.

 

LP3 GEV

Reference sites (#22) a Nonreference sites (#67) Reference sites (#24) Nonreference sites (#75)

AMF PDS AMF PDS AMF PDS AMF PDS

T-years R < 1 b (R > 1) c R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1)

400 --- (---) 4/22 (82%) --- (---) 12/67 (82%) --- (---) 20/24 (17%) --- (---) 69/75 (8%)

200 0/22 (100%) 3/22 (86%) 0/67 (100%) 14/67 (79%) 12/24 (50%) 20/24 (17%) 43/75 (43%) 67/75 (11%)

100 1/22 (95%) 4/22 (82%) 2/67 (97%) 14/67 (79%) 14/24 (42%) 19/24 (21%) 34/75 (55%) 61/75 (19%)

50 2/22 (91%) 10/22 (55%) 2/67 (97%) 20/67 (70%) 10/24 (58%) 16/24 (33%) 38/75 (49%) 51/75 (32%)

25 6/22 (73%) 12/22 (45%) 6/67 (91%) 27/67 (60%) 10/24 (58%) 9/24 (63%) 35/75 (53%) 23/75 (69%)

10 14/22 (36%) 19/22 (14%) 42/67 (37%) 61/67 (9%) 13/24 (46%) 2/24 (92%) 44/75 (41%) 9/75 (88%)

5 22/22 (0%) 22/22 (0%) 65/67 (3%) 66/67 (1%) 13/24 (46%) 3/24 (88%) 40/75 (47%) 0/75 (100%)

2 22/22 (0%) 22/22 (0%) 66/67 (1%) 67/67 (0%) 17/24 (29%) 23/24 (4%) 39/75 (48%) 69/75 (8%)
a There were 24 reference and 75 nonreference sites. For LP3, there were two reference (06354000 and 08380500) and eight nonreference sites 

(05054000, 05079000, 06754000, 08126380, 11179000, 11446500, 12117500, and 14359000) with scale parameter β<3 that made Eq. 4 undefined. 
Those sites were not pursued further for LP3 analysis.  bR < 1: flood was overestimated; R > 1: flood was underestimated cFirst numbers represent the 

fraction of sites with overestimated floods. The numbers in parentheses indicate the percentage of underestimated floods.

Five-year flood

LP3 performed well in estimating a five-year flood with both 
AMF and PDS (Figure 3b and Table 1). However, the performance 
of GEV was not spatially consistent. Interestingly, adding more 
information to a flood series through the use of the PDS alongside 
AMF did not improve the performance of the GEV and actually 
worsened it (Table 1). At equal numbers of sites, the GEV with 
AMF could or could not estimate floods well. Given the uncertainty 
surrounding the use of GEV for a five-year flood estimation, it 
appeared that LP3, either with AMF or PDS (with a preference for 
AMF), was a better choice regardless of site being reference or non-
reference (Table 1).

Ten-year flood

For 10-year flooding events, the use of the PDS improved 
the LP3 flood quantile estimates compared to the AMF for both 
reference and nonreference sites (Table 1, No. of sites with R < 1 
for 10-year event, 19 14 36%

14
−

=  and nonreference  61 42 =
42

45%− ) sites. 

Similarly to a five-year flood, the performance of GEV worsened 
when using the PDS instead of the AMF (Table 1). The LP3 
distribution with PDS data should be utilized for both reference 
and nonreference sites, while the use of GEV distribution should 
be avoided. At three sites (nonreference: USGS 03284000-Kentucky 
and 09239500-Colorado; reference: USGS 04254500-New York), 
neither LP3 nor GEV performed well, even with the use of the PDS 
instead of the AMF (Figure 3c). Other distributions besides LP3 and 
GEV may improve flood estimations for these sites.

Twenty-five-year flood

For the return period of 25 years, LP3 showed a 100 percent 
improvement for reference sites when the PDS was utilized (Table 
1, No. of sites with R < 1 for 25-year event, 12 6 100%

6
−

= ), while for 
nonreference sites, the improvement was even higher ( 27 6 350%

6
−

=  
). The performance of GEV did not change considerably when using 
the PDS instead of the AMF (Table 1). Overall, the performance of 
LP3 and GEV did not indicate a consistent spatial pattern favoring 
one over the other (Figure 3d). At one cluster of sites, mainly located 
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in the mid-Atlantic, neither LP3 nor GEV distributions performed 
well (Figure 3d). Since in that cluster, the number of reference sites 
was greater than nonreference sites, it might imply an increase in 
climate nonstationarity for higher flood quantiles in the Northeast 
[55], where LP3 and GEV failed to capture the peak flows. A smaller 
number of nonreference sites compared to reference sites, where 
neither LP3 nor GEV were fitted to peak flow observations, indicated 
how climate nonstationarity could be masked by anthropogenic 
disturbances in the northeastern U.S. [56].

Fifty-year flood

For 50-year floods, LP3 did not perform well with the AMF 
regardless of site conditions (Table 1). Although using the PDS 
improved the performance of LP3, the number of sites with R <1 
and R > 1 did not indicate significant differences. LP3 might not 
be a suitable choice for 50-year flood estimations across the U.S. 
However, the GEV outperformed LP3 for estimating 50-year floods 
by using a PDS series instead of an AMF. The performance of GEV 
was enhanced for both reference (Table 1, No. of sites with R < 1 for 
50-year event, 16 10 60%

10
−

= ) and nonreference sites ( 51 38 34%
38
−

=
).

It appeared that GEV could perform well for flood estimations 
in the Northeast (Figure 3e). Since neither LP3 nor GEV performed 
well at the following nonreference sites (USGS01076500-New 
Hampshire, 01434000-New York, 03082500-Pennsylvania, and 
08313000-New Mexico), utilizing other distributions besides 
LP3 and GEV is suggested (Figure 3e). With all those sites being 
nonreference, it might indicate that, depending on the region 
of interest, anthropogenic nonstationarity might echo climate 
nonstationarity [56].

One-hundred-year flood

For a 100-year flood, the PDS did not improve the performance 
of LP3 compared to AMF (Table 1). However, using the PDS 
instead of the AMF significantly enhanced the performance of 
GEV for both reference (Table 1, No. of sites with R < 1 for 100-
year event, 19 14 36%

14
−

= ) and nonreference ( 61 34 79%
34
−

= ) sites. 
There was a cluster of sites in the Northeast where neither LP3 
nor GEV performed well in estimating a 100-year flood (Figure 
3f). As mentioned earlier, this might indicate increases in climate 
variability stimulated by changes in sea-surface temperature 
(Atlantic Multi-decadal Oscillation, represented by AMO index) or 
sea-level pressure (North Atlantic Oscillation, represented by NAO 
index) [56- 59].

Two-hundred-year flood

The 200-year floods showed similar patterns to 100-year 
floods (Figure 3g and Table 1). The performance of LP3 was not 
significantly improved, even when using the PDS instead of the 
AMF. However, the PDS enhanced the performance of the GEV for 

both reference (Table 1, No. of sites with R < 1 for a 200-year event, 
20 12 67%

12
−

= ) and nonreference sites ( 67 43 56%
43
−

= ). At six sites 
(Figure 3g), mostly nonreference, both LP3 and GEV did not estimate 
floods well (nonreference: USGS 01170500-Massachusetts and 
01567000-Pennsylvania; reference: USGS 03069500-West Virginia, 
05454500-Iowa, 05464500-Iowa, and 06714000-Colorado). For 
longer return periods, climate or anthropogenic nonstationarity 
indicated greater effects on flood quantile estimates. However, 
using the PDS helped the GEV better estimate a 200-yr flood.

Four-hundred-year flood

Flood frequency analysis for a return period of 400 years was 
only feasible for the PDS since it comprised of at least 350 peak 
flow observations on average (Table S1). Regardless of whether 
the sites were reference or nonreference, the GEV considerably 
better estimated a 400-year flood than the LP3 (Figure 3h and 
Table 1). At a cluster of sites in the mid-Atlantic, neither GEV nor 
LP3 accurately estimate a 400-year flood, even when using the PDS 
instead of the AMF. Similar to a 200-year flood, the confounding 
effects of changing climate and anthropogenic disturbances were 
evident in the Northeast, suggesting greater uncertainties in high 
flood quantile forecasting.

Summary and conclusions

We constructed a PDS from daily streamflow data gathered 
from 24 reference and 75 nonreference sites across the U.S., each 
site having more than 100 years of AMF records. Since the PDS 
provided multiple flooding events per year instead of just the 
maximum observed peak flow as indicated by the AMF, its inclusion 
in flood frequency analysis suggested potential improvement 
in flood quantile estimates. We applied LP3 (product moment) 
and GEV (L-moment) distributions to both the AMF and PDS. 
By comparing results between reference and nonreference 
sites, we aimed to differentiate between climate variations with 
anthropogenic nonstationarity.

We have summarized the results for distributions suitable for 
estimating two- to 400-year flooding events in Table 2. We observed 
that for high-frequency floods with recurrence intervals of two to 
10 years, LP3 fitting to the AMF data performed well. However, for 
longer return periods, the PDS aided in improving the performance 
of LP3. There was no clear recommendation for an appropriate 
distribution for a 25-year flood. It appears this return period acted 
as a transition, replacing the LP3, which reliably estimated shorter 
period floods of two to 10 years, with the GEV for estimating longer 
period flooding events. For high flood quantiles of 50-400 years, the 
performance of GEV was significantly enhanced using the PDS.
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Figure 3 a-h: Performance of LP3 and GEV distributions in estimating flood quantiles of two to 400 years recurrence intervals. The left column 
of the box belongs to LP3 while the right side represents GEV. The first and second rows describe results for AMF and PDS, respectively. 
The green circle in the middle of the box indicates a reference site while the red circle belongs to a nonreference site. Blue and gray themes 
represent R < 1 and R > 1, respectively. Arrows and circles on the maps emphasize locations where neither LP3 nor GEV provided reliable 
flood quantiles estimates.

http://dx.doi.org/10.33552/AHM.2024.01.000523


Citation: Rouzbeh Berton* and Vahid Rahmani. Improving Low-Frequency Flood Estimation Using the Partial Duration Series Instead of the 
Annual Maximum Across the United States. Adv in Hydro & Meteorol. 1(5): 2024. AHM.MS.ID.000523. 
DOI: 10.33552/AHM.2024.01.000523

Advances in Hydrology & Meteorology                                                                                                                             Volume 1-Issue 5

Page 9 of 14

Table 2: Suggested statistical distribution along with appropriate peak flow information for improving flood quantiles estimates across the U.S.

T-years Choice of distribution

400 GEV PDS

200 GEV PDS

100 GEV PDS

50 GEV PDS

25 No specific pattern, potential transition period from LP3 to GEV

10 LP3 with PDS

5 LP3 with AMF/PDS

2 LP3 with AMF/PDS

Sites where neither LP3 nor GEV reliably estimated flood 
quantiles require special attention. This could be indicative of 
increases in either climate or anthropogenic nonstationarity in the 
region. One potential solution would be to examine the performance 
of other distributions introduced for addressing nonstationarity 
[57]. Poor performance of LP3 or GEV was mainly observed in the 
Northeast, where climate nonstationarity has affected high flood 
quantiles in the region [54]. Increases in climate variability could 
be stimulated by Atlantic circulation patterns [58-61]. Future study 
should focus on understanding how variations in flood generating 
mechanisms can affect high and low flood quantile estimates. 
Reliable flood quantile estimates, considering nonstationarity, 
help improve flood forecasting, and reduce property damage and 
loss of life through enhanced infrastructure design, reservoir 
management, and floodplain determination.
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Table S1: Description of 24 reference and 75 nonreference study sites with more than 100 years of peak flow information across the contiguous United States.

No. ID USGS streamflow gauging 
stations Latitude Longitude Period of 

record
No. of observed 

AMF (PDS)
Drainage 

area (km2)
Gauge 

height (m) Site condition

1 1030500 Mattawamkeag River near Mat-
tawamkeag, ME 45.5 -68.31 1903-2015 115 (316) 3,673 66 Reference

2 1031500 Piscataquis River near Do-
ver-Foxcroft, ME 45.18 -69.31 1903-2015 115 (412) 772 109 Reference

3 1144000 White River at West Hartford, VT 43.71 -72.42 1916-2017 102 (414) 1,787 114 Reference

4 1350000 Schoharie Creek at Prattsville, 
NY 42.32 -74.44 1903-2017 109 (344) 614 345 Reference

5 1532000 Towanda Creek near Monroeton, 
PA 41.71 -76.48 1914-2016 104 (254) 557 233 Reference

6 1543000 Driftwood Br Sinnemahoning Cr 
at Sterling Run, PA 41.41 -78.2 1914-2017 104 (362) 704 273 Reference

7 1550000 Lyoming Creek near Trout Run, 
PA 41.42 -77.03 1914-2017 104 (278) 448 212 Reference

8 3015500 Brokenstraw Creek at Youngs-
ville, PA 41.85 -79.32 1910-2017 108 (363) 831 362 Reference

9 3069500 Cheat River near Parsons, WV 39.12 -79.68 1844-2016 106 (267) 1,870 485 Reference

10 3070500 Big Sandy Creek at Rockville, WV 39.62 -79.7 1888-2016 105 (197) 518 403 Reference

11 4254500 Moose Rover at Mckeever, NY 43.61 -75.11 1869-2017 103 (125) 940 451 Reference

12 5362000 Jump River at Sheldon, WI 45.31 -90.96 1916-2016 102 (372) 1,492 333 Reference

13 6191500 Yellowstone River at Corwin 
Springs, MT 45.11 -110.79 1890-2017 111 (287) 6,775 1548 Reference

14 6354000 Cannonball River at Breien, ND 46.38 -100.93 1906-2017 102 (588) 10,619 511 Reference

15 7067000 Current River at Van Buren, MO 36.99 -91.01 1904-2017 106 (422) 4,318 135 Reference

16 7068000 Current River at Doniphan, MO 36.62 -90.85 1904-2017 101 (448) 5,278 98 Reference

17 8380500 Gallinaz Creek near Montezuma, 
NM 35.65 -105.32 1915-2016 100 (468) 218 2097 Reference

18 10109001 Com F Logan R AB ST D and 
Cache HL Can NR Logan, UT 41.74 -111.78 1896-2017 122 (702) 554 1426 Reference

19 10234500 Beaver River near Beaver, UT 38.28 -112.57 1914-2017 104 (632) 236 1890 Reference

20 11264500 Merced R A Happy Isles Bridge 
NR Yosemite, CA 37.73 -119.56 1916-2017 102 (443) 469 1228 Reference

21 11266500 Merced R A Pohono Bridge NR 
Yosemite, CA 37.72 -119.67 1917-2017 101 (406) 831 1177 Reference

22 11383500 Deer C NR Vina, CA 40.01 -121.95 1912-2017 101 (725) 539 146 Reference

23 13185000 Boise River NR Twin Springs, ID 43.66 -115.73 1871-2015 109 (561) 2,155 1018 Reference

24 14137000 Sandy River near Marmot, OR 45.4 -122.14 1912-2015 106 (513) 684 0 Reference

25 1034500 Penobscot River at West Enfield, 
ME 45.24 -68.65 1902-2017 116 (435) 16,633 38 Non 

reference

26 1042500 Kennebec River at The Forks, ME 45.34 -69.96 1901-2017 116 (710) 4,118 173 Non 
reference

27 1053500 Androscoggin River at Errol, NH 44.78 -71.13 1906-2017 112 (903) 2,709 374 Non 
reference

28 1054500 Androscoggin River at Rumford, 
ME 44.55 -70.54 1893-2017 125 (477) 5,356 128 Non 

reference

29 1076500 Pemigewasset River at Plymouth, 
NH 43.76 -71.69 1904-2017 114 (341) 1,611 139 Non 

reference

30 1170500 Connecticut River at Montague 
City, MA 42.58 -72.57 1904-2017 114 (424) 20,357 30 Non 

reference

31 1315500 Hudson River at North Creek, NY 43.7 -73.98 1908-2017 110 (325) 2,051 301 Non 
reference

32 1325000 Sacandaga River at Stewarts 
Bridge NR Hadley, NY 43.31 -73.87 1908-2017 110 (291) 2,732 177 Non 

reference
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33 1381000 Rockaway River below Reservoir 
at Boonton, NJ 40.9 -74.39 1903-2017 106 (1208) 308 60 Non 

reference

34 1389500 Passaic River at Little Falls, NJ 40.88 -74.23 1810-2017 125 (753) 1,974 37 Non 
reference

35 1434000 Delaware River at Port Jervis, NY 41.37 -74.7 1903-2017 114 (410) 7,951 126 Non 
reference

36 1453000 Lehigh River at Bethlehem, PA 40.62 -75.38 1902-2017 112 (342) 3,313 64 Non 
reference

37 1536500 Susquehanna River at Wil-
kes-Barre, PA 41.25 -75.88 1786-2017 132 (455) 25,796 156 Non 

reference

38 1551500 WB Susquehanna River at Wil-
liamsport, PA 41.24 -77 1889-2017 124 (418) 14,716 151 Non 

reference

39 1567000 Juniata River at Newport, PA 40.48 -77.13 1889-2017 120 (487) 8,687 111 Non 
reference

40 1638500 Potomac River at Point of Rocks, 
MD 39.27 -77.54 1889-2017 124 (530) 24,996 61 Non 

reference

41 1668000 Rappahannock River NR Freder-
icksburg, VA 38.31 -77.53 1908-2017 110 (752) 4,131 21 Non 

reference

42 2055000 Roanoke River at Roanoke, VA 37.26 -79.94 1889-2017 120 (540) 995 276 Non 
reference

43 2223000 Oconee River at Milledgeville, GA 33.09 -83.22 1904-2017 115 (680) 7,640 70 Non 
reference

44 2223500 Oconee River at Dublin, GA 32.54 -82.89 1894-2017 124 (806) 11,396 45 Non 
reference

45 2339500 Chattahoochee River at West 
Point, GA 32.89 -85.18 1897-2017 122 (693) 9,194 168 Non 

reference

46 2387500 Oostanaula River at Resaca, GA 34.58 -84.94 1886-2017 127 (738) 4,149 184 Non 
reference

47 3011020 Allegheny River at Salamanca, NY 42.16 -78.72 1904-2017 114 (419) 4,165 414 Non 
reference

48 3051000 Tygart Valley River at Belington, 
WV 39.03 -79.94 1908-2017 111 (397) 1,052 512 Non 

reference

49 3082500 Youghiogheny River at Connells-
ville, PA 40.02 -79.59 1860-2017 128 (463) 3,434 262 Non 

reference

50 3183500 Greenbrier River at Alderson, 
WV 37.72 -80.64 1896-2017 122 (443) 3,533 466 Non 

reference

51 3193000 Kanawha River at Kanawha Falls, 
WV 38.14 -81.21 1878-2017 140 (560) 21,681 189 Non 

reference

52 3284000 Kentucky River at Lock 10 NR 
Winchester, KY 37.89 -84.26 1908-2017 109 (484) 10,243 170 Non 

reference

53 3548500 Hiwassee River above Murphy, 
NC 35.08 -84 1897-2017 107 (332) 1,052 469 Non 

reference

54 4024000 St. Louis River at Scanlon, MN 46.7 -92.42 1908-2017 110 (547) 8,884 336 Non 
reference

55 4073500 Fox River at Berlin, WI 43.95 -88.95 1898-2017 118 (781) 3,471 227 Non 
reference

56 4223000 Genesee River at Portageville, NY 42.57 -78.04 1902-2017 109 (258) 2,549 329 Non 
reference

57 4266500 Raquette River at Piercefield, NY 44.23 -74.57 1900-2017 110 (374) 1,867 458 Non 
reference

58 5054000 Red River of the North at Fargo, 
ND 46.86 -96.78 1897-2017 116 (1146) 17,612 263 Non 

reference

59 5079000 Red Lake River at Crookston, MN 47.78 -96.61 1897-2017 117 (985) 13,649 254 Non 
reference

60 5211000 Mississippi River at Grand 
Rapids, MN 47.23 -93.53 1884-2017 134 (1928) 8,728 379 Non 

reference

61 5454500 Iowa River at Iowa City, IA 41.66 -91.54 1881-2017 117 (996) 8,472 188 Non 
reference
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62 5464500 Cedar River at Cedar Rapids, IA 41.97 -91.67 1903-2016 116 (925) 16,861 214 Non 
reference

63 6714000 South Platte River at Denver, CO 39.76 -105 1895-2007 110 (279) 10,013 1572 Non 
reference

64 6754000 South Platte River Near Kersey, 
CO 40.41 -104.56 1902-2007 104 (965) 25,022 1395 Non 

reference

65 7096000 Arkansas River at Canon City, CO 38.43 -105.26 1889-2017 129 (1107) 8,073 1628 Non 
reference

66 8033500 Neches River NR Rockland, TX 31.03 -94.4 1904-2017 113 (998) 9,417 27 Non 
reference

67 8126380 Colorado River NR Ballinger, TX 31.72 -100.03 1908-2017 110 (1259) 42,367 490 Non 
reference

68 8220000 Rio Grande NR Del Norte, CO 37.69 -106.46 1890-2017 128 (864) 3,419 2432 Non 
reference

69 8279500 Rio Grande at Embudo, NM 36.21 -105.96 1889-2017 120 (800) 26,936 1765 Non 
reference

70 8313000 Rio Grande at Otowi Bridge, NM 35.87 -106.14 1895-2017 116 (509) 37,037 1673 Non 
reference

71 9085000 Roaring Fork River at Glenwood 
Springs, CO 39.54 -107.33 1906-2017 110 (406) 3,763 1744 Non 

reference

72 9239500 Yampa River at Steamboat 
Springs, CO 40.48 -106.83 1904-2017 111 (355) 1,469 2041 Non 

reference

73 9304500 White River NR Meeker, CO 40.03 -107.86 1901-2017 109 (354) 1,968 1920 Non 
reference

74 10128500 Weber River NR Oakley, UT 40.74 -111.25 1905-2017 113 (316) 420 2024 Non 
reference

75 10141000 Weber River NR Plain City, UT 41.28 -112.09 1905-2017 113 (989) 5,390 1282 Non 
reference

76 10322500 Humboldt River at Palisade, NV 40.61 -116.2 1903-2017 111 (732) 13,087 1472 Non 
reference

77 10346000 Truckee River at Farad, CA 39.43 -120.03 1900-2017 118 (667) 2,414 1571 Non 
reference

78 11152000 Arroyo Seco NR Soledad, CA 36.28 -121.32 1906-2017 112 (383) 632 103 Non 
reference

79 11179000 Alameda Creek NR Niles, CA 37.59 -121.96 1892-2017 126 (1504) 1,639 26 Non 
reference

80 11251000 San Joaquin River BL Friant, CA 36.98 -119.72 1908-2017 108 (1419) 4,341 90 Non 
reference

81 11323500 Mokelumne River BL Camanche 
Dam, CA 38.23 -121.02 1905-2017 114 (1345) 1,608 25 Non 

reference

82 11335000 Cosumnes River at Michigan 
Bar, CA 38.5 -121.05 1907-2017 111 (1032) 1,388 51 Non 

reference

83 11377100 Sacramento River Ab Bend 
Bridge NR Red Bluff, CA 40.29 -122.19 1879-2017 136 (897) 23,051 87 Non 

reference

84 11446500 American River at Fair Oaks, CA 38.64 -121.23 1862-2017 113 (1197) 4,890 22 Non 
reference

85 12117500 Cedar River NR Landsburg, WA 47.39 -121.95 1896-2017 118 (751) 313 172 Non 
reference

86 12372000 Flathead River NR Polson, MT 47.68 -114.25 1908-2017 111 (472) 18,335 821 Non 
reference

87 12422500 Spokane River at Spokane, WA 47.66 -117.45 1891-2017 127 (669) 11,111 517 Non 
reference

88 12452500 Chelan River at Chelan, WA 47.83 -120.01 1904-2015 110 (988) 2,393 327 Non 
reference

89 13056500 Henrys Fork NR Rexburg, ID 43.83 -111.91 1909-2017 109 (1081) 7,563 1465 Non 
reference

90 13077000 Snake River at Neeley, ID 42.77 -112.88 1906-2017 112 (649) 35,224 1293 Non 
reference
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91 13247500 Payette River NR Horseshoe 
Bend, ID 43.94 -116.2 1906-2017 109 (829) 5,750 800 Non 

reference

92 14033500 Umatilla River NR Umatilla, OR 45.9 -119.33 1904-2017 114 (468) 5,931 101 Non 
reference

93 14048000 John Day River at Mcdonald 
Ferry, OR 45.59 -120.41 1905-2017 112 (562) 19,632 120 Non 

reference

94 14103000 Deschutes River at Moody, NR 
Biggs, OR 45.62 -120.91 1897-2017 113 (869) 27,195 51 Non 

reference

95 14140000 Bull Run River NR Bull Run (Riv-
er Only), OR 45.44 -122.18 1908-2017 102 (389) 277 173 Non 

reference

96 14174000 Willamette River at Albany, OR 44.64 -123.11 1861-2017 133 (817) 12,536 51 Non 
reference

97 14210000 Clackamas River at Estacada, OR 45.3 -122.35 1909-2017 109 (594) 1,738 87 Non 
reference

98 14321000 Umpqua River NR Elkton, OR 43.59 -123.56 1906-2016 111 (638) 9,539 28 Non 
reference

99 14359000 Rogue River at Raygold NR Cen-
tral Point, OR 42.44 -122.99 1906-2016 112 (798) 5,317 342 Non 

reference
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