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Introduction

Distributions of oceanic temperature (T) and salinity (S) are the 
primary drivers of ocean dynamics [1]. These T and S distributions, 
in association with the atmosphere-hydrosphere interactions have 
been studied in relation to the recent climatic variations [2, 3] and 
developing models for predicting occurrences of the future hurri-
canes [4]. 

 
Physical Oceanographers measure T and S data at sparse locations 
using disposable instruments such as the eXpendable BathyTher-
mograph (XBT) and Conductivity Temperature Depth (CTD) sen-
sors. These instruments measure T and S with a vertical resolution 
of about 1 meter. They are, however, sparsely deployed, typically 
from tens to hundreds of kilometers apart. These T and S measure-
ments from sparse locations, when interpolated in-between to pro-
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vide the oceanic T and S distributions, are of low lateral resolution 
and may not be very reliable [5]. Therefore, estimating T and S with 
higher lateral resolutions than that is obtainable from XBT and CTD 
measurements is desirable [5],

Moving away from the XBT and CTD, marine seismic data show 
visible reflections within the water-column. These reflections are 
due to subtle sound-speed variations of the oceanwater, typically 
ranging from about 1545 m/s at the sea-level to approximately 
1485 m/s to a depth of 1000-1200 m and then staying nearly con-
stant [6]. These sound-speed variations (V) are, in turn, related to 
the variations of T, S, and pressure (P) via the equation of state [7, 
8], given as

3/2 2( , ) ( , ) ( , ) ( )WV C T P A T P S B T P S D P S= + + +  (1)

Exact expressions for CW(T, P), A(T, P), B(T, P), 
and D(P) can be found in the references cited above. 
Note from equation 1 that V is a function of not only T and S, but 
also the pressure P, which is function of the latitude (⏀) and the 
depth (z). However, P can be easily calculated [6, 9]. So, if we can es-
timate V by inverting the marine seismic data, it is possible to start 
from an initial guess of T and S and compute V using equation 1 and 
iteratively modify T and S using an optimization (inversion) scheme 
such that the V computed from T and S satisfactorily matches with 
the V estimated from seismic inversion. When they match to an ac-
ceptable accuracy, we may then conclude that the T and S estimated 
from optimization is reasonable. Although these T and S estimates 
from marine seismic data are of lower vertical resolution (~5 me-
ters) than XBT and CTD, their lateral resolution is much higher (25 
meters or less). Thus, the high vertical resolution of XBT and CTD 
in combination with the high lateral resolution of the seismic, can 
potentially provide high-resolution oceanwater T and S estimates 
for the weather and climate related research.

In the following, we first provide a brief overview of the current 
state-of-the-art for estimating V from seismic inversion and discuss 
the optimization procedure for estimating T and S from the inverted 
V. Next, we discuss the future possibilities of using recent advances 
of machine learning to directly estimate T and S from seismic data. 
Finally, we end with some concluding remarks.

Current State-of-the-Art

Seismic inversion is a nonunique problem and therefore re-
quires an initial model [10]. The primary reason for this require-
ment is to ensure that the inversion converges to a meaningful solu-
tion, not to an undesired one [9]. In the subsurface exploration of 
the solid earth, such an initial model at sparse locations are usually 
available from the well-logs. Interpolating these models at sparse 
locations along the horizons, interpreted from the stacked seismic 
data then provides the initial model for the entire area of interest. 
For the problem of the sound-speed estimation from the water-col-
umn reflections, such an initial model can be generated from the 
XBT and CTD data. However, because of sparse deployments of XBT 
and CTD sensors, they may not be available, and yet, we would like 

to obtain an initial sound-speed model for inversion. 

To obtain a reliable sound-speed model in the absence of XBT 
and CTD data, Padhi, et al. [6] developed a methodology which is 
illustrated in Figure 1. By carefully running seismic inversion using 
genetic algorithm (GA) optimization [11-14] at five sparse locations, 
detailed sound-speed for those locations were first obtained. These 
locations are marked by arrows on top of the stacked seismic data, 
shown in Fig.1a. Following these sparse inversions, three horizons, 
shown as black curves in Fig.1a, were interpreted and the inverted 
models at sparse locations were laterally interpolated in-between 
these interpreted horizons to obtain an initial model for the entire 
seismic line. This initial model is shown in Fig.1b. Note that instead 
of using the detailed sound-speed models from the sparse inversion 
runs, their smoothed versions were used in these interpolations. 
Finally, starting from the initial sound-speed models for each com-
mon midpoint (CMP) location shown in Figure 1b, Padhi, et al. [6] 
inverted those locations and obtained detailed sound-speed model 
for the entire seismic data, shown in Figure 1c.

The process of the initial model generation and inversion illus-
trated in Figure 1 although worked well on the real marine seis-
mic data from the South China Sea, it suffers from some difficul-
ties for practical implementation. First, the GA-based inversions at 
sparse locations are computationally demanding and require a lot 
of technical expertise. In the two-dimensional (2D) example shown 
in Figure 1 sparse inversions at five locations were adequate. For 
three-dimensional (3D) seismic data, a lot more such inversions 
would be necessary, which could be prohibitively expensive. Sec-
ond, interpreting horizons from stacked seismic data is prone to 
human errors. Lastly, by comparing the initial model (Figure 1b) 
and the final inverted model (Figure 1c), it is evident that the im-
print of the initially picked horizons is propagated across the in-
verted model. If additional horizons were picked for interpolation, 
it is likely that the inverted model would look different from the one 
shown in Figure 1c. Thus, the inverted model tends to be biased by 
the interpreted horizons and it is desirable to obtain a bias-free in-
version result in which the imprint of the interpreted horizons are 
not propagated across like the example of Figure 1.

To obtain bias-free inversion, an attribute-guided method to 
generate the initial model has been recently developed, which does 
not require any sparse inversion runs nor does it require any hori-
zon-guided interpolation [9, 15]. In this attribute-guided approach, 
an initial model is first generated via an automated velocity anal-
ysis [16, 17] at every 50th CMP location and then laterally inter-
polating them. This lateral interpolation is performed purely on a 
sample-by-sample basis, not guided by any interpreted horizon. 
Figure 2 shows this initial model for the same South China Sea data, 
shown in Figure 1. Using the initial model of Figure 2, prestack seis-
mic data were then compensated for geometrical spreading loss, 
corrected for normal moveout (NMO), and stacked [16, 17]. The 
stacked seismic data obtained from this procedure was identical to 
the one shown in Figure 1a and therefore not shown.
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Figure 1: Example of initial model generation and seismic inversion, developed by Padhi et. al. [6]. (a) Stacked seismic data with locations 
of the sparse inversion runs marked by arrows and three interpreted horizons shown as black curves. (b) Initial sound-speed model. (c) Final 
sound-speed model from inversion. The data used in the example are real seismic data from the South China Sea.

Figure 2: Sound-speed generated from velocity analysis and sample-by-sample interpolation.

Following velocity analysis and stacking, a time-domain attri-
bute Eint(t) where t is time was defined as follows:

2 2( ) [ ( )] [ ( )]E t A t B t= +  (2)

int
0

( ) ( ) .
t

E t E t dt= ∫  (3)

In equation 2, A(t)represents stacked seismic data, and B(t) is 
computed from A(t) as follows:

1.	 Fourier transform A(t) from time to frequency (⍵) domain to 
compute A(⍵).

2.	 For each sample of A(⍵), interchange the real and imaginary 
parts to obtain B(⍵).

3.	 Inverse Fourier transform B(⍵) to time domain and take its 
real part as B(t).
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Figure 3 is the cross-plot between the computed attribute Eint(t) 
and the sound-speed obtained from the velocity analysis and lat-
eral interpolation (Figure 2) for the same five locations that are 
marked with arrows in Figure 1a. The plotted points in this Figure 

are shown as black dots. In addition, a best-fit polynomial through 
those points is computed and shown as red curve in Figure 3. The 
equation represented by this best-fit polynomial was found to be:

3 2
int int int2.6238 23.02 59.542 1532.3V E E E= − + − +

 (4)

with a  R2 value of 0.8741 [15]. Using equation 4, the sound-
speed for the entire seismic line was then computed directly from 
the attribute Eint(t) and is shown in Figure 4. 

Finally, using the attributed-guided sound-speed model of Fig-
ure 4 as the initial model, the entire seismic data were inverted, 
and the results are shown in Figure 5 in both time (Figure 5a) and 
depth (Figure 5b) domains. From a visual comparison of the invert-

ed model in time domain (Figure 5a) with the stacked seismic data 
(Figure 1a), note that although our initial model of Figure 4 did 
not have any horizon information, the inversion result is in perfect 
agreement with the reflection boundaries in the stacked seismic 
data. Therefore, the attribute-guided initial model (Figure 4) is not 
prone to any bias to which the horizon-guided initial model (Fig-
ure 1b) is subject to. Additionally, this attribute-guided approach 
is fully automated and does not require any sparse inversion runs. 
We thus believe that the attribute-guided approach can be used for 
estimating V from marine seismic data on a routine basis.

Figure 4: Attribute-guided initial sound-speed model. After Chakraborty and Mallick [15].

Figure 3: Eint(t) versus sound-speed (V) cross-plot. The plotted points are in black dots and the best-fit polynomial through the points is in red. 
After Chakraborty and Mallick [15].
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Figure 5: Sound-speed estimation using the attribute-guided initial model, (a) in time domain, and (b) in depth domain. After Chakraborty and 
Mallick [15].

Following the estimation of the sound-speed (V), the next step 
is to estimate the temperature (T) and salinity (S) from V. To do so, 
Chakraborty and Mallick [15] started from an initial T and S model 
and used the Adaptive Moment Estimation (ADAM) optimization 
method [18] to simultaneously estimate T and S from V. The exact 
methodology for this ADAM optimization for T and S estimation can 
be found in the reference cited above, and in Figure 6 we provide 
the results of these estimates. Like attribute-guided seismic inver-
sion, the ADAM methodology for T and S estimations are also fully 
automated, and therefore applicable to marine seismic data on a 
routine basis.

Discussion of Future Possibilities

The T and S estimations, discussed above used a two-step pro-
cess. In step-1, the seismic data were inverted to obtain V (Figure 5) 
and in step-2, T and S were estimated from V (Figure 6). Although 
we argued that the entire process is fully automated and can be 
used on a routine basis, we must note that the seismic inversion 
for estimating V is computationally demanding [15]. It is therefore 
worthwhile to investigate if the overall computational efficiency of 
the method could be improved.

Use of artificial intelligence (AI), specifically machine learning 
(ML) recently revolutionized almost all fields of applied science and 
engineering, including geosciences. In Figure 7, we provide our vi-
sion of how ML could potentially convert the two-step approach to 
a single step of directly estimating T and S from seismic data and 
improve overall computational efficiency.

Both conventional supervised learning using labelled data 
and supervised learning using physics-informed machine learning 
(PIML) is outlined in Figure 7. For convenience, we used different 
colors to identify different modules in the architecture shown in 
this Figure. Fundamental ML steps using a deep neural network 
are shaded in light gray, the supervised learning components us-
ing labelled data are shaded in green, and the PIML components 
are shaded in blue. Finally, the components that are used by both 
supervised learning from labelled data and PIML are shaded in pur-
ple. 

As shown in Figure 7, the input seismic data from the input lay-
er are fed to a deep learning architecture such as a convolutional 
neural network, which will directly output T and S. For learning us-
ing labelled data, the T and S output form the network will be com-
pared with their corresponding labels to compute the loss function 
and fed to an optimization method such as ADAM for adjusting 
weights. For PIML based learning, we can compute the sound-
speeds from the T and S output from the network using equation 1 
and then compute synthetic (predicted) seismic data. By comparing 
these synthetic seismic data with their corresponding real seismic 
data from the input layer, we can then compute the loss function 
and feed to the optimizer for weight adjustment. By using a select-
ed set of training and validation data, computing the optimum net-
work weights, and then applying to the entire data is expected to 
be a computationally efficient way to directly estimate T and S from 
marine seismic data.
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Conclusion

We provided an overview of a two-step inversion method to 
estimate the oceanwater temperature and salinity from marine 
seismic data. We also provided a vison of how this two-step pro-
cess can be converted to a single step using machine learning and 
improve overall computational efficiency. Lateral resolution of the 
estimates of temperature and salinity from marine seismic data are 
much higher than those obtainable from XBT and CTD. Therefore, 

marine seismic data could potentially be used for future weather 
and climate related research.
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