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Introduction

Brazil’s electric energy system is a large hydro-thermo-wind 
matrix, with a predominance of hydroelectric plants, the so-called 
National Interconnected System (NIS). The installed generation 
capacity of the SIN is mainly composed of hydroelectric plants 
distributed in sixteen hydrographic basins in different regions of 
the country (ONS, 2020) and its interconnection allows the energy 
transfer between subsystems and explores the diversity between 
the hydrological regimes of the basins, warranting the country 
market to be served safely and economically.

 

Brazil’s vast territory encompasses several climatic zones, leading 
to significant regional differences in how climate change impacts 
rainfall patterns. In the Amazon, for example, there has been an 
observed increase in the frequency and intensity of droughts, 
undermining the health of the rainforest [1]. Southeastern and 
southern parts of the country have experienced variable changes, 
with periods of severe drought interspersed with heavy rainfall 
events causing flooding and landslides [2-4]. Concomitantly, the 
northeast region is trending towards dryer conditions during the 
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last decades, leading to critical land cover changes and concerning 
increases in desertification susceptible areas [5, 6]. The current 
climate scenario infringes great economic losses and emphasizes 
social inequalities to Brazil [7-9]. Also considering the sequence of 
years with adverse hydrological conditions, the NIS is placed under 
great operational pressure, therefore increasing the hydrological 
insecurity and energy availability [10] (ONS, 2019).

Because of its geographic position, the Brazilian climate is 
influenced by multiple meteorological features, such as the El 
Niño-Southern Oscillation (ENSO), Intertropical Convergence Zone 
(ITCZ), South Atlantic Subtropical Anticyclone (SASA), and South 
Atlantic Convergence Zone (SACZ) [11, 12]. In this study, we focused 
on the influence of the South Atlantic Subtropical Anticyclone, 
which is associated with the descending branch of the Hadley Cell 
in Atlantic Ocean and characterized by a high-pressure center 
[13] being a central climate driver to the Brazilian climate regime 
[14]. The SASA, for instance, contributes to moist conditions in the 
southeastern region of Brazil when it is summer in the Southern 
Hemisphere, when SASA retracts eastward from South America’s 
coast, and drier during winter, when the feature moves towards the 
continent [15].

Blocking events are often associated with drier and hotter days. 
Some of them pointed out past decade imposing severe weather 
conditions [16- 20].

Although atmospheric blocking definitions may vary among 
authors, their classification matches similar minimum criteria 
in terms of persistence, which can be found to be over three or 
more consecutive days of transient obstruction, positive 500hPa 

and 1000hPa positive geopotential height anomalies [21] 500hPa 
positive geopotential height anomalies. Westerly winds and wind 
vorticity also seem to play an important role in the blocking 
lifetime maintenance [22,23]. Many authors use 10 to 20 days of 
persistence to define an atmospheric blocking event, but these 
addresses north hemisphere events. The main difference between 
hemispheres occurs due to stronger westerly winds activity in the 
SH: the blocking high lifetime tends to be shorter than that in the 
NH [21].

In recent decades the global atmospheric circulation has 
been subject to robust trends associated to stratospheric ozone-
depletion and tropospheric warming. These trends were found 
in both hemispheres and accounts for the Hadley cell, tropical 
belt and dry-zones expansion, mid-latitude westerly winds speed 
augment, eastward position displacement plus intensified SASA 
influence over South America continent and SACZ poleward shift 
[23-31]. These atmospheric circulation trends, associated with 
more persistent weather patterns in mid-latitudes [32] deeply 
affect the rainfall patterns over South America and Brazil, having 
the potential to affect not only the Brazilian economy, but also the 
energetic security and population health.

 Methodology

Vorticity at the 850hPa and 500hPa levels, as well as the 
geopotential anomaly at 500hPa were considered to produce 
this index, as can be seen in the diagram in figure 1. The basis 
for calculating the geopotential anomaly was the period between 
1980-2010, using data from ERA 5 with 0.25°x0.25° horizontal 
resolution, for all variables.

A blocking episode was considered whenever the three 
atmospheric parameters analyzed had a positive value, physically 
representing a vorticity with a vertical structure at low and medium 
levels, at least between 850hPA and 500hPa, and a descending 
air anomaly, represented by the positive geopotential anomaly. 
Whenever these positive values remained for more than three days, 
the index was assigned a value of 1. This value was added over 

the course of the month until one of the three parameters was no 
longer positive, returning the index value to zero. Thus, the number 
of days with blockings in each month of the year was calculated. 

Seven areas were created for this calculation, as illustrated in 
Figure. 2. The choice of area was based on the observation of the 
synoptic patterns identified here as blockings, based on the 20-

Figure 1: Schematic drawing of the variables used to calculate the Atmosphere Blocking index.
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year experience of one of the authors as an operational weather 
forecaster. In addition, the Total Area is approximately 70% of 
Brazil’s water storage capacity for hydroelectric generation, which 

is one of the highest population densities and highly dependent on 
the use of water for irrigable agriculture in the country [10] 

Results

The results of this study aimed to assess the quantitative 
evolution of the occurrence of atmospheric blocking over Brazil in 
the seven areas analyzed, according to the methodology described 
in Section 2.

First, we can see the temporal decomposition of the blockade 
series from January 1960 to February 2024 (Figure 3) for three of 

the seven regions analyzed, since the trend pattern observed in the 
North H1 and H2 areas was very similar to that of the Total North 
area, as was the case for the South area. In all three areas, there was 
a slight increase in the number of days with atmospheric blocking 
between 1980 and 2000, and a more marked increase from 2010 
onwards, especially in the northern and total areas. In the South, 
this increase can also be observed, but it is smoother.

Figure 2: Spatial divisions of the seven areas evaluated in this study.

(a)
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(b)

(c)

Figure 3: Temporal decomposition of the number of days with atmospheric blockades in the North (a), South (b), and Total areas (c) from 
January 1960 to January 2024.
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To quantify this trend, boxplot graphs were drawn to show 
the evolution of the median and variability of the number of days 
per month with atmospheric blockings over the last few decades 
(Figure 4). It should be noted that only the period from January 
2020 to January 2024 was considered for 2020s.

The most significant increase in the median number of blocked 
days occurred in the North area and its two sub-areas (H1 and H2), 
where the median, which was close to three days per month in the 
1960s and the 1970s, rose to 15 days between 2010 and 2020, and 
20 days in the first three years of 2020. It is worth noting that in 
these regions, the median, from 2010 onwards, was often in the 

accumulated probability of outliers in the first two decades. A 
significant change could also be seen in the other regions, with the 
median number of days with blockings ranging from around 5 days 
a month to around 13 days a month in the South area and its sub-
areas, and from around 3 days in the total area in the first decades 
to 18 days a month from 2010 onwards. 

These values show an extremely strong trend in the number 
of days with blocking per month in these regions, with the median 
plus one standard deviation reaching almost 25 days per month in 
most regions, whereas it was close to 8 days in the first two decades.

The correlation matrix between the number of blockades over 
the entire period analyzed (Figure 5) shows that there is a high 
correlation between the Total area and the other areas, but a much 

less significant correlation between the North and South areas, 
especially in relation to their sub-areas, indicating that there is also 
a regional factor in the occurrence of atmospheric blockades.

Figure 4: Boxplot graphs of the series of days with blockings per month, separated by decades, from January 1960 to January 2024.

Figure 5: Correlation matrix between the number of days with atmospheric blockades in the seven areas analyzed from January 1960 to 
January 2024.
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Conclusion

There has been a notable increase (around 150 %) in the 
number of days with blockings in all the regions analyzed since 
2010, demonstrating that the index is consistent with the water 
crisis experienced by the country during this period. 

Therefore, we conclude that the index can be used as a good 
indicator of periods of water deficit in Brazil and can be used 
quantitatively in studies aimed at identifying, for example, which 
teleconnection patterns may influence this type of water deficit as 
well as the influence of deforestation, fires in the Amazon, and the 
changing climate on the increase in the number of blocked days in 
these regions.

Another important point that should be analyzed is the regional 
and seasonal behavior of atmospheric blockades, which can be 
associated with different forcings in the climate system.
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