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Abstract
Semi-automated-segmentation quantifies non-isotropic Xenon-129 lung images in order to provide the Ventilation-Defect-Percent (VDP), but 

this method is not ideally suited for 3D-isotropic-voxel analysis. 3D-isotropic-voxel 129Xe images can be used to calculate semi-automated and deep 
learning-based automated VDP values for lung disease assessment. We aimed to develop a fully-automated Deep Learning-based (DL) segmentation 
algorithm for 3D 129Xe MRI analysis which generates VDP. This is a prospective study which included 10 participants (COVID-19 Survivors) with 
ventilation heterogeneity. A DL segmentation method was used to compute VDP and was compared to the semi-automated method serving as the 
benchmark reference. Imaging was acquired from Fast-Gradient-Recalled-Echo in 16sec breath-hold. Isotropic imaging was generated using a zero-
filling approach. A non-significant mean difference for semi-automated-segmentation and DL-based VDP values was observed. SNR values were 
above 5 (Rose criteria). 

The two VDP estimates had an intercept of -0.03, a slope of 1.1 and r=0.89. Bland Altman analysis indicated negligible bias and Sørensen-
Dice (similarity) coefficients suggested a good match between the ground truth (semi-automated-segmentation) and DL segmentations. This study 
establishes the use of a deep-learning-based algorithm for segmentation and suggests the proposed method can be an alternative for time-consuming 
and higher variability segmentation methods.
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Introduction

Hyperpolarized Xenon-129 magnetic resonance imaging (MRI) 
is an established research tool which has recently (December 
2022) received the Food and Drug Administration (FDA) approval. 
The method provides sensitive and unique functional information  

 
in the lungs for observation and therapy guidance/assessment for 
individuals with respiratory conditions such as chronic obstructive 
pulmonary disease (COPD) [1,2], asthma [3], and Cystic Fibrosis 
(CF) [4,5]. Several recent studies have indicated that improved 129Xe 
polarization techniques have allowed for high spatial and temporal 
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resolution pulmonary images, [2,6] that quantify ventilation het-
erogeneity and can provide calculation of ventilation defect percent 
(VDP) [7] for individuals diagnosed with COPD and asthma.

Recently, a new emerging respiratory disease caused by SARS-
CoV-2, Coronavirus Disease 19 (COVID-19) [8,9], has influenced a 
pandemic of respiratory illness around the world with particular 
severe course in the elderly [10]. Symptoms of COVID-19 infection 
involve the upper respiratory tract and can vary from mild, such 
as the common cold, to severe, including pneumonia [11]. A recent 
study highlighted the importance of using 129Xe MRI to evaluate 
pulmonary function damage and microstructural parameters in 
COVID-19 participants, by finding significant differences in VDP 
[12]. In addition, studies have used hyperpolarized xenon-129 to 
identify long-term symptoms following COVID-19 infection, which 
Computed Tomography (CT) scans were unable to detect [13]. One 
study used 129Xe MRI to detect long-term pulmonary injury due to 
COVID-19 and found results which indicate compromised gas ex-
change in the lungs, which provide reasoning for symptoms that 
could not be understood through other imaging approaches [14]. 

Another study found objective damage in gas transfer in the 
lungs of COVID-19 participants with normal CT scans using 129Xe 
MRI [15]. These studies conclude that the use of 129Xe MRI in COVID 
studies will allow for an increased understanding of the symptoms 
after COVID-19, as it provides evidence of lung abnormalities that 
are not detected with conventional imaging [14,15]. Furthermore, 
studies are continuing to investigate the extent and repercussions 
of prolonged or extended symptoms of COVID-19 through the use 
of 129Xe MRI to improve lung disease progression [16].

Many studies quantifying ventilation heterogeneity in partici-
pants with pulmonary disease by calculating VDP have predomi-
nately used non-isotropic voxel scans [voxel size = 5x5mm2) 129Xe 
MRI datasets [2,17,18]. Newer non-Cartesian methods such as FLO-
RET and 3D radial have also been used with non-isotropic voxels 
and are being investigated to improve 129Xe ventilation imaging and 
acquisition of isotropic resolution ventilation images have been 
demonstrated [19,20]. The development of high-resolution isotro-
pic voxel in 129Xe imaging faces a number of obstacles such as insuf-
ficient, <5, [21] Signal-to Noise Ratio (SNR), [22,23] which does not 
allow for an accurate generation of the VDP estimates [24]. Another 
limitation is MRI scan time due to the relatively short breath-hold 
durations required to obtain the 3D isotropic-voxel 129Xe MRI static 
ventilation images. The 129Xe MRI modality has been found to be 
well tolerated by participants with lung diseases in general, [18,25-
27] but the breath-hold should be limited to approximately 16 sec-
onds. 

This allows for the acquisition of sixteen 15mm slices and 
collection of the non-isotropic voxel static ventilation images. 
High-resolution datasets include approximately 80 slices, thus re-
quiring 80-seconds of breath-hold which is not physically possible 
from participants. The compressed sensing technique can help to 
minimize the scan time, however, the highest acceleration factor 
used for the 129Xe static ventilation imaging was three [28], while 
one needs 5 to finish the acquisition in 16 seconds.

Efforts have been undertaken to address the challenge of 
non-isotropic voxel limitations. In this context, isotropic-voxel 
high-resolution 3D 129Xe static-ventilation images were acquired 
through a single 16sec breath-hold using Fast Gradient Recalled 
Echo (FGRE), focusing on asthma subjects [22,24,29,30]. 129Xe 
high-resolution imaging is important as it should permit more ac-
curate assessment of disease-progression, inform treatment op-
tions, and improve our understanding of ventilation heterogeneity. 
In our work, we acquired the non-isotropic 16-slice dataset using 
129Xe FGRE MR imaging and generated the pseudo isotropic xenon 
80-slice dataset using a zero-filling method.

The quantification of the isotropic-voxel high-resolution data-
sets can be challenging for several reasons. Presently used semi-au-
tomated segmentation [31] is able to provide ventilation-de-
fect-percent estimates from 3D non-isotropic 129Xe lung images. 
Previous methods to quantify ventilation abnormalities include 
manual and semi-automated segmentation [31], the latter being 
the current gold standard. Algorithms to segment thoracic cavity 
images include seeded region-growing [31], clustering [32], and 
model-based techniques [33]. However, these methods are not 
optimal for isotropic-voxel high-resolution 3D 129Xe MRI analysis, 
partly due to the large number of slices [~80), thus creating a very 
time-consuming task. Recently, deep learning methods have been 
proposed to automatically segment the thoracic cavity region and 
ventilated region for non-isotropic 129Xe MRI [34].

Deep Learning (DL) is a type of machine learning that simulates 
human brain functions using multi-layered artificial neural net-
works. Its effectiveness hinges on two main factors: data availability 
and computational power. Recent advancements in data, computer 
processing, and graphics processors have significantly enhanced 
DL, leading to deeper and more successful neural networks. Convo-
lutional neural networks (CNNs) leveraged by DL-based techniques 
have gained prominence in various medical imaging applications, 
particularly in image segmentation [35]. The primary objective 
of CNNs is to learn the feature maps of an image for the purpose 
of image classification. However, in the context of image segmen-
tation, the aim shifts towards reconstructing an image from the 
feature map and assigning a classification to each individual pixel. 
Presently, DL approaches have shown a multitude of achievements 
in the field of medical image analysis [36] due to their efficiency 
and accuracy, such as brain tumor segmentation [37], lung segmen-
tation in CT images [38], breast cancer radiotherapy [39] and for 
segmenting the lung to monitor potential biomarkers of pulmonary 
perfusion in COPD [40]. 

Segmentation models based on convolutional neural networks 
[41], such as U-Net [42] and U-Net++ [43], show potential to be 
used for VDP calculation. A study has demonstrated the use of a 
Pix2Pix generative adversarial network to generate synthetic 129Xe 
ventilation images that contain arbitrary ventilation defects and 
corresponding segmentation masks of the thoracic cavity [44]. 
Employing deep learning techniques such as CNN, has significantly 
enhanced pulmonary functional imaging by augmenting the qual-
ity of functional images, decreasing acquisition time and improve 
image segmentation and reconstruction [45-47]. Studies have used 
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machine-learning algorithms in hyperpolarized gas MRI to predict 
lung ventilation heterogeneity in COPD participants [48] and to re-
construct human lung gas MRI from under-sampled k-space data 
[47]. We hypothesize that DL-based algorithms can be used for ac-
curate generation of the VDP estimates from zero-filled generated 
isotropic-voxel images [80 slices] and can provide accurate assess-
ment of lung structure and function. 

In this study, 3D 129Xe static-ventilation data was acquired from 
ten COVID-19 survivors assuming that this lung disease causes ven-
tilation defects [49]. The fully automated deep learning-based algo-
rithm was used to generate VDP estimates from the isotropic voxel 
data, contrasting with a semi-automated method [31]. as the ref-
erence gold standard and/or ground truth. Our work on DL-based 
segmentation of hyperpolarized gas MRI distinguishes itself from 
prior studie by Tustison, et al. [50] and Astley, et al. [51] through 
the implementation of two distinct methodologies. Primarily, the 
U-Net++ architecture for segmentation was used, a deviation from 
the U-Net and nn_U-Net leveraged in earlier studies, respectively. 
As an advanced iteration of the U-Net architecture, U-Net++ incor-
porates supplementary skip connections and dense convolutional 
blocks, thereby boosting the precision of segmentation. Secondly, a 
transfer learning strategy was adopted from the ImageNet dataset, 
enabling us to fine-tune a pre-existing model to cater to our specific 
task with limited dataset. 

This approach has been empirically demonstrated to bol-
ster the performance of deep learning models across a variety of 
medical imaging tasks, including segmentation. The combination 
of these two techniques, namely the use of the advanced U-Net++ 
architecture and the application of transfer learning, not only dif-
ferentiates our work from previous studies but also contributes a 
unique and valuable perspective to the field of hyperpolarized gas 
MRI segmentation. We believe that our methodology, which effec-
tively balances computational efficiency with segmentation preci-
sion, offers a promising avenue for future research in this domain.

Materials and Methods

Study Participants

Ten COVID-19 Survivors were enrolled and provided written 
inform consent following the study protocol approved by a local 
ethics board.

Pulmonary Function Tests

Spirometry, plethsmography and the diffusing-capaci-
ty-of-the-lung-for-carbon-monoxide (DLco) were performed ac-
cording to American Thoracic Society (ATS) guidelines [52] using a 
plethysmograph with an attached gas analyzer [MedGraphics Cor-
poration. St. Paul, MN USA) to obtain the FEV1, forced vital capacity, 
residual volume and total lung capacity.

129Xe and 1H MRI Acquisition
129Xe MR imaging was performed at 3.0T (MR750, GEHC, WI) em-

ploying whole-body-gradients (Gmax=5 G/cm, slew rate=200 mTm-

1s-1), in accordance with previously described methods [53], and a 
commercial coil, 129Xe quadrature-flex RF[MR Solutions, USA). The 

129Xe gas was polarized to 35% [initially 86% enriched) and was 
obtained from a turn-key, spin-exchange polarizer system (Polar-
ean-9820 129Xe-polarizer) [54]. A 30/70 by volume 129Xe/4He mix-
ture of 1L was inhaled by all participants from functional residu-
al capacity (FRC) during a 16 second breath-hold. Non-isotropic 
voxel xenon-static-ventilation images were obtained using a cor-
onal-plane 3D FGRE sequence, TE/TR=1.5ms/5.1ms, reconstruct-
ed matrix size=128x128x16, initial flip angle=1.3o, FOV=40x40x-
24cm3, and voxel-size=3x3x15mm3, as previously described [7]. 1H 
MRI was performed as previously described [55]. The 128x128x80 
slice datasets were generated using the 128x128x16 matrix size 
and then zero-filled 5-fold in the slice direction of the original 3D 
k-spaces.

Image Analysis 

SNR Calculations

The SNR of 129Xe images was computed within three central cor-
onal-view slices. This was achieved byusing a 15x15 voxel square 
region of interest situated within a lung area of homogeneous 
signal, along with the same 15x15 voxel square region of interest 
placed outside the lung in an area of devoid of lung signal [56].

VDP Calculation using a Semi-Automated method

Hyperpolarized gas MRI enables the observation of lung func-
tionality by identifying unventilated areas within the lung, referred 
to as ventilation defects. The measurement of ventilation defects 
is performed using the Ventilation Defect Percent [VDP), which in-
volves determining the ratio between the overall volume of ventila-
tion defects [VDV) and the total volume of the thoracic cavity [TCV). 
This calculation applies to both semi-automated and fully automat-
ed deep learning techniques. The identification of ventilation de-
fects was accomplished through the application of a k-means clus-
tering methodology. For semi-automated segmentation, a k-means 
clustering algorithm previously described was used for semi-au-
tomated VDP calculations [30,31]. Two trained observers who 
completed 1-week full-time training with certification at Western 
University calculated the semi-automated-based VDP calculations, 
taking approximately 45-mins to 1-hour for each participant [80 
slices each). Thus, taking approximately 10 hours per observer to 
obtain semi-automated VDP values.

VDP Calculation using a Fully-Automated approach

U-Net is a commonly used DL segmentation network which 
allows for fast and precise segmentation of images and has out-
performed previous convolutional networks [41]. U-Net++ was in-
troduced in the field to overcome problems of U-Net, such as the 
unknown optimal depth of encoder-decoder in each specific task 
and the restrictive design of skip connections. Our study used a se-
mantic segmentation task [57]. Semantic segmentation involves as-
signing a class label to every pixel within an image. In our research 
we had two classes: 1) pixels belonging to the lung 2) pixels that 
do not belong to the lung area. In this work, we used U-Net++ com-
posed of two pathways [43]. First, an encoder down-sampled the 
image while extracting the features using convolution and pooling 
layers. The objective in this instance was to encapsulate the context 
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of the input image. Secondly, a decoder up-sampled the information 
from the encoder which resulted in an accurate localization.

At the same time, the encoder’s high-resolution contextual in-
formation was relayed to the decoder via skip connection to assist 
with localization. Finally, the contextual information from the en-
coder path was combined with the localization in the decoder to 
restore the size of the image and produce the predicted segmenta-
tions. In U-Net++, The redesigned skip connections have been in-
troduced to decrease the semantic disparity between the contract-
ing and expanding pathways, a significant improvement over the 
original U-Net architecture.

Since training a convolutional neural network with randomly 
initialized weights demands a substantial volume of data, transfer 
learning was used [58] in our architecture. ResNet 152 was utilized, 
which was trained on the ImageNet [59] dataset. ImageNet, encom-
passing over 14 million images, is frequently employed to train 
models for computer vision. This includes object categories such 
as animals, vehicles, and household objects. Training our model on 
such a big dataset gave us the advantage of introducing our net-
work to basic and common concepts of images like edges and light 
intensity transitions. As a result, our network was pretrained on a 
bigger dataset to make it ready for our own MRI data. As the back-
propagation take place to update the Deep Neural Network, the 
partial derivative will get either very small or very large, resulting 
in the vanishing/exploding gradient problem [60,61]. To overcome 
this challenge, ResNet [62] was proposed in 2015, introducing the 
concept of Residual Blocks combined with skip connection. Consid-
ering the advantages of this network, configuration of ResNet with 
152 layers was used as the backbone of implementing the U-Net++ 
architecture. 

The use of a pre-trained version of ResNet 152 speeded up the 
training process and results in faster convergence. To improve the 
model’s robustness and preprocess the dataset, various data aug-
mentation [63] techniques were employed. This included pixel 
translation within a range of [-20, 20] in both X and Y axes to make 
the model translation invariant. Additionally, rotations between 
[-30°,30°] were applied to the input images to enhance robustness 
against rotational variances. Furthermore, size and intensity scal-
ing between 0.8 and 1.2 were performed to achieve size invariance 
in the model. Finally, elastic deformation which has proved very 
useful in image segmentation tasks [42] was applied.

The training dataset consisted of 800 129Xe image sets. More-
over, the entire partially annotated training dataset was also used 
as the validation dataset during training. The test dataset consisted 
of 10 image sets from 10 subjects. To train the model, the Adam [64] 
optimizer was selected as the optimization algorithm. Finally, we 
optimized the network parameters over 200 epochs, with 100 up-
dates each. For every update in each epoch, only 20 2D slices were 
utilized from the complete training dataset to adjust the network 
weights. A learning rate of 0.0001 was used as the step size and set 
the batch size to 20 to expedite the learning process. The network 
was implemented on the Keras 2.2.4 and Python 2.7 platforms, har-
nessing the computational power of an NVIDIA Tesla P100 Graph-
ics Processing Unit [GPU) by NVIDIA Corp., based in Santa Clara, CA, 

USA. The deep learning-based algorithm used a U-Net++ network 
[43]. This trained network was used to segment the lung in the 80 
slices 1H images for each participant. An affine and deformable reg-
istration from the NiftyReg package was employed. [http://cmictig.
cs.ucl.ac.uk/wiki/index.php/NiftyReg) to align the 1H MR images 
with the 129Xe volumes.

 The lung-segmentation was warped and the 129Xe image signal 
within these adjusted lung masks was automatically divided into 
5 clusters, employing a 3D k-means clustering approach [31]. VDP 
was calculated by normalizing 129Xe ventilation-defects represent-
ed by the 1st cluster to the warped lung-masks [65]. Establishing 
the ground truth for texture analysis necessitates the process of 
registration. Previous methods include 3He MRI co-registered with 
Computed Tomography (CT) using rigid [66], affine [67] and de-
formable [68] techniques. More recently, an automated approach 
has been developed by registering both CT and 3He MRI to 1H MRI 
using NiftyReg affine and deformable registration tools [65]. The 
overall workflow of the deep learning-based segmentation begins 
with input images which are pre-processed in order to make the 
inputs ready for the network. Then, the model starts training. After 
each epoch, the model’s hyperparameter are updated to reduce the 
model loss. At the end the segmentation masks are provided as the 
output of the network.

Statistical Analysis

Pearson correlation coefficient was used to determine the re-
lationship between semi-automated and DL-based VDP values. 
T-tests were performed using SPSS Statistics, V26.0 (SPSS Inc., Chi-
cago, IL). Results were considered significant when the probability 
of two-tailed type I error (α) was less than 5% (p<.05). Bland-Alt-
man (BA) was conducted for both semi-automated and DL-based 
VDP estimates. The Sørensen-Dice [similarity) coefficient (DSC) 
[69) was used for validation:

Here, ‘y’ represents the ground truth image while ‘y_pred’ re-
fers to the prediction generated by our model. 

DSC values can range from 0 to 1. A value of 0 implies no spa-
tial intersection between the ground truth segmentation mask and 
the predicted mask, while a value of 1 signifies complete overlap. 
DSCs were computed for three distinct slices - anterior, central, and 
posterior.

Results

Table 1 provides an overview of the participant demographics 
and results from pulmonary function tests. Participant’s age ranged 
from 29 to 76, mean forced expiratory volume (FEV1) =79 and mean 
forced vital capacity (FVC) = 81. The diffusing capacity for carbon 
monoxide (DLco) ranged from 63% to 91% and the Residual Vol-
ume (RV) from 73% to 116% for five participants. DLco and RV for 
participants 1 to 5 had inaccurate data due to hardware issues and 
thus were not reported. Figure 1 shows coronal view for the tradi-
tional resolution voxel (3x3x15mm3) and anterior to posterior 129Xe 
MRI static-ventilation slices fora representative COVID-19 survivor. 
Images visualize ventilation defects and heterogeneity in the lungs. 
The calculated mean SNR values of the 3 central slices across all 
study participants ranged from 13 to 106.
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Figure 1: Coronal 129Xe MRI slices.
Coronal view of the original 16-slice data (voxel=3x3x15mm3) from anterior to posterior of 129Xe MRI static-ventilation slices for a representative 
COVID-19 participant. Ventilation heterogeneity or areas with ventilation defects can be visualized by the dark regions seen within the lungs. 
The calculated mean SNR values of the 3 central slices from all participants ranged from 13 to 106.

Figure 2a and 2b show coronal and axial view slices for the 
80-slice dataset (voxel=3x3x3mm3) 129Xe MRI static-ventilation for 
same COVID-19 survivor, respectively. Images show ventilation de-
fects and heterogeneity in the lungs. The calculated mean SNR val-
ues of the 3 central slices across all study participants ranged from 
5.7 to 42.1 (Table 1). Figure 3 (top panel) shows proton lung seg-

mentation obtained from the DL-based automated lung segmenta-
tion algorithm in coronal, axial and sagittal views. Figure 3 (bottom 
panel) displays the xenon lung segmentation obtained from the DL-
based automated lung segmentation algorithm in coronal, axial and 
sagittal views after applying the k-means clustering approach in all 
three views. 

Figure 2a: Representative coronal 80 slice 129Xe MRI images.
Coronal view of the 80-slice dataset (voxel=3x3x3mm3) from anterior to posterior of 129Xe MRI static-ventilation slices for the same representative 
COVID-19 participant. The dark regions within the lung images show the ventilation defects or heterogeneity.
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Figure 2b: Representative axial 80-slice 129Xe MRI images.
Axial view of the 80-slice dataset (voxel=3x3x3mm3) from superior to inferior of 129Xe MRI static-ventilation slices for the same representative 
COVID-19 participant. The dark regions within the lung images show ventilation defects or heterogeneity.

The VDP values for the semi-automated segmentation meth-
od were 2.3%, 2.9%, 1.9%, 0.5%, 0.3%, 3.9%, 2.5%, 0.6%, 0.8%, 
0.9% for participants 1 to 10, respectively (Table 1). The overall 
semi-automated VDP mean value was 1.7±0.72 (at 95% confidence 
interval). The VDP values for the deep learning-based segmen-
tation method were 2.6%, 2.3%, 1.1%, 0.3%, 0.3%, 3.4%, 3.9%, 
0.4%, 0.7%, 0.8% for participants 1 to 10, respectively (Table 1). 
The overall mean DL VDP value was 1.6±0.80 [at 95% confidence 
interval). Both semi-automated and deep learning-based VDP cal-
culations were provided and the largest disagreement between two 
VDP estimates was found for COVID survivor-7, semi-automated 

VDP = 2.5% and DL VDP = 3.9%. This participant also showed the 
smallest SNR values.

Ventilation defect percentage for semi-automated and deep 
learning methods both showed a significant positive correlation 
with FEV1% [r = 0.72, P = 0.02 and r = 0.68, P = 0.3, respectively). 
Both semi-automated and DL-based VDP values did not correlate 
significantly with FVC%, RV% and DLco%. Figure 4 illustrates the 
correlation between VDP values obtained through semi-automat-
ed methods and those acquired via fully automated deep learn-
ing from all COVID-19 survivors: intercept=-0.03, slope=1.1, and 
r=0.89. Figure 5 shows the BA analysis for the semi-automated and 

Figure 3: Representative proton and xenon lung segmentation.
Representative proton lung segmentation obtained with the DL-based automated-lung-segmentation-algorithm for the coronal, axial, and 
sagittal views (top panel). Representative xenon clustering lung images obtained using a 3D k-means-clustering-approach for the coronal, 
axial, and sagittal views (bottom panel).
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deep learning-based VDP estimates and plot indicates the average 
of the two VDPs [solid line) and the 95% limits of agreement (dot-

ted lines). Participants = 10, mean = -1.48±0.83, std. error mean = 
0.26, r=0.51, R2=0.26, lower limit = -0.75 and upper limit = 0.45.

Figure 4: Linear plot of Semi-Automated DL VDP values.
Relationship of semi-automated based VDP values with deep learning-based fully automated VDP values obtained from nine participants. 
Intercept = -0.03, Slope = 1.1, r=0.89. Plot shows a significant correlation between two forms of VDP.

Figure 5: Bland-Altman analysis for semi-automated and DL VDP values.
Bland-Altman analysis for semi-automated and deep learning-based VDP estimates for all ten COVID-19 participants. Participants = 10, mean 
= -1.48±0.83, std. error mean = 0.26, r=0.51, R2=0.26, lower limit = -0.75 and upper limit = 0.45. Analysis indicates negligible bias between the 
two types of VDPs.

Table 1: Demographics and 129Xe MRI Results.

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10

Age 74F 76M 69M 29F 47F 61F 63F 52F 36M 55M

BMI (kg/m2) 33.6 36.6 41.1 19.2 20.8 38.4 33.4 28.4 32.0 29.0

FEV1 % 71 78 70 67 75 117 89 61 76 82

FVC % 91 73 66 92 60 111 88 66 73 94

RV % 73 95 95 116 115

DLCO% 83 66 90 91 63

SA VDP % 2.3 2.9 1.9 0.5 0.3 1.5 2.6 0.6 0.8 0.9
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DL VDP % 2.6 2.3 1.1 0.3 0.3 3.4 3.9 0.4 0.7 0.8

SNR-1 12.5 14.8 14 40 24.2 28.6 6.8 19.3 24.6 26.3

SNR-2 11.9 16 13.3 42.1 28.4 30.1 5.7 21.8 22.7 24.6

SNR-3 12.7 13.2 16 35.4 34.8 33.2 6.1 21.3 26.2 19.7

DSC-A % 84 58 87 87 90 90 86 81 79 82

DSC-A % 85 57 90 92 94 93 89 91 88 90

DSC-A % 88 94 96 94 95 92 97 94 94 94

DSC-C % 91 95 92 94 93 95 92 96 94 95

DSC-C % 91 92 92 92 92 94 93 96 92 95

DSC-C % 96 89 93 93 94 96 95 94 94 93

DSC-P % 96 92 93 96 92 94 96 96 95 95

DSC-P % 96 93 91 92 87 95 96 92 94 95

DSC-P % 86 88 93 92 88 96 86 95 94 95

CS=COVID survivor; BMI=body mass index; FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; RV=residual volume; DLCO=diffusing 
capacity for carbon monoxide; 129Xe MRI-based VDP=ventilation defect percent, SNR=signal to noise ratio, SA= Semi-Automated, DL=Deep-Learning, 

DSC= Dice Similarity Coefficient (A=anterior slices, C=central slices (the first branching of the trachea into the main bronchi), P=posterior slices). Each 
row of DSC refers to a different slice in the appropriate region.

DSCs calculated for three central slices ranged from 91% to 
96% (Table 1), the overall mean values were 94±1.0%, 93±1.0% 
and 94±1.2% for the three central slices, respectively. DSCs calcu-
lated for three anterior slices ranged from 54% to 93%, excluding 
0 values, and overall mean values were 66.4±7.8%, 82.4±2.8% and 
86.9±3.2%, for each slice. The DSCs calculated for three posterior 
slices ranged from 71% to 96%, excluding 0 values, and overall 
mean values were 91.3±1.2%, 68.9±11.1%, and 61.38±12.6%, for 
each slice.

Discussion

In this study, the potential for achieving complete automated 
segmentation of the 80-slice 129Xe lung images was demonstrat-
ed. The primary objective of this work was to apply deep learn-
ing-based algorithms to the 80-slice datasets and assess the ven-
tilation heterogeneity within the lungs. The semi-automated lung 
segmentation method takes quite long [~45min to an hour per 
study subject) and should be replaced with more efficient approach 
to analyze the 80-slice datasets obtained from potentially larger 
participant studies. We believe that the quantitative analysis of the 
129Xe lung images with better resolution may improve sensitivity to 
detect smaller ventilation deficits and therefore, more reliable for 
disease progression observation and therapy assessment. This as-
pect becomes significant in view of the FDA approval acquired for 
129Xe MRI.

Ventilation defect percentage for semi-automated and deep 
learning methods showed a significant positive correlation with 
FEV1% [r = 0.7232, P = 0.01809 and r = 0.6821, P = 0.02978, respec-
tively). Both semi-automated and DL-based VDP values did not cor-
relate significantly with FVC%, RV% and DLco%. These results are 
expected, as previous studies, 129Xe ventilation MRI has found sim-
ilar significant correlations between semi-automated VDP results 

and FEV1%, but no significant correlations with FVC and DLco for 
participants with asthma [22,70-72]. Another study found stronger 
correlations between FEV1% and 129Xe MRI-based VDP compared 
to phase resolved functional lung MRI in participants with CF [73]. 
Thus, it can be concluded that our correlation to FEV1% and VDP 
estimates are similar to previously reported literature. 

SNR was calculated for both 16-slice datasets [original data] 
and 80-slice datasets [generated data] 129Xe MRI static-ventilation 
slices and were all above the Rose criteria of SNR=5 [21]. The SNR 
estimates for the 80-slice images were approximately half of the 
16-slice images, but with voxel-size five times smaller [Table 1).

The smallest SNR value for both 16-slice and 80-slice images 
was found for COVID survivor 7, with SNR between 11 to 13 and 
5.7 to 6.8, respectively. Previous studies have assessed the impact 
of SNR on DL-generated VDPs and that it is invariant to SNR with 
no significant impact on VDP accuracy [34,49]. This result demon-
strates that the used zero-filling method generated sufficient qual-
ity 80-slice lung images.  The sufficient SNR values of the 80-slice 
images permitted to conduct quantitative analysis and specifically, 
the semi-automated [31] and deep learning-based VDP calculations 
for each study participant. We used the current reference stan-
dard [semi-automated segmentation] to validate the deep learn-
ing-based approach conducting the lung segmentation and then the 
VDP estimate calculation utilizing the k-mean clustering method. To 
our knowledge this is the first report of the VDP estimates obtained 
from 80-slice COVID-19 survivors 129Xe lung images. The 80-slice 
129Xe MRI-based VDP values have been previously measured in 
asthma participants using a high resolution data acquisition meth-
od and our mean VDP values reported for both semi-automated and 
deep learning methods were consistent with these results [22]. 

This further supports our hypothesis that DL-based algorithms 
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can provide accurate VDP estimates and therefore will be able 
to provide accurate assessment of lung structure and function. A 
strong linear correlation between semi-automated and DL-based 
VDP values was found with a Pearson correlation coefficient of 
r=0.89 [the intercept was close to zero and slope close to unity, Fig-
ure 4 suggesting the reasonable preciseness of the VDP estimates 
obtained with the DL-based approach. COVID survivor 7 demon-
strated the largest disagreement between the two VDP estimates 
obtained with two different approaches. This discrepancy may 
have resulted from low SNR values, suggesting that SNR values well 
above the Rose criteria (SNR=5) [21] should be used for accurate 
VDP estimation.

Furthermore, Bland Altman analysis indicated a negligible bias 
between the two types of VDPs. The t-score test was not statistical-
ly significant, Sig = 0.369, suggesting that there is no proportional 
bias. Bland Altman analysis assists in evaluating the level of agree-
ment between two measurement methods [74], thus it can be con-
cluded from these results that semi-automated and DL-based VDP 
calculations are both reliable and accurate. The two outliers seen in 
Figures 4 and 5 may have resulted from the combination of lower 
SNR and small training dataset. A smaller training dataset could po-
tentially result in outliers due to overfitting, a scenario where the 
model excessively learns the training data, incorporating its noise 
or outliers. This overfitting can result in unexpected results when 
the model is applied to new, unseen data. Therefore, the outliers 
observed in Figures 4 and 5 may be a consequence of the combina-
tion of lower Signal-to-Noise Ratio (SNR) and the limited size of our 
training dataset. 

The overall mean DSC values for slice 1 was 94 ± 1.0%, slice 2 
was 93 ±1.0% and slice 3 was 94 ± 1.2% [at 95% confidence inter-
vals). DSCs acquired from semi-automated and DL based VDP values 
are at a range of good reproducibility and indicate high spatial over-
lap between the two segmentation results [69]. Thus, suggesting a 
good match between the semi-automated and DL segmentations, 
further supporting the accuracy of DL-based VDP calculations.

This study used U-Net++ composed of two pathways [42]. In 
the U-Net++ architecture, the fundamental encoder-decoder struc-
ture is preserved, while enhancements are introduced through 
the incorporation of additional up-sampling and skip connections. 
These modifications facilitate the creation of U-Nets with varying 
depths. The central incentive for reconfiguring the skip connections 
was to lessen the semantic disparity between the contracting and 
expanding pathways., thereby simplifying the optimization process. 
Furthermore, U-Net++ introduces the concept of deep supervision. 
This innovative feature allows for the adjustment of model com-
plexity, thereby striking a balance between computational speed 
and performance. The nested design enables the reuse of features 
from lower layers, effectively reducing the semantic disparity be-
tween feature maps at different scales. Simultaneously, the dense 
skip connections promote superior feature fusion and help allevi-
ate the vanishing-gradient problem, a common issue in deep learn-
ing models. 

Consequently, U-Net++ has showcased exceptional perfor-
mance in a range of tasks, notably in medical image segmentation 

and object detection, often outperforming the original U-Net and 
other comparable architectures [75]. In this pilot study, several 
study limitations are acknowledged including low SNR-based er-
rors, small number of study subjects, impossibility to acquire the 
80 slice images, small dataset used for the network training, and 
using to different semi-automated segmentation methods for the 
data generation for the training network and ground truth. Addi-
tionally, the range of VDP values in the dataset are relatively small 
and thus may limit applicability of the proposed approach and DSC 
values on anterior and posterior slices tend to be much lower when 
compared to central slices.

SNR that is less than or around the Rose criteria is considered 
a limitation any quantitate analysis and therefore, for the VDP cal-
culations. However, newer polarization methods with increased 
129Xe polarization levels (400ml volume in 15-20 minutes providing 
~50% polarization) can improve SNR and image quality. Enhanced 
progression of MRI hardware encompassing the integration of a 
rigid and more homogenous coil [53,76] along with a phased-re-
ceive-array [77] holds the potential to significantly enhance the 
80-slice image quality and potentially decreasing dose of the isoto-
pically-enriched 129Xe, and consequently, reducing the cost of 129Xe 
MRI for participants without compromising the image quality.

In addition, this study was limited by sample sizes of the par-
ticipants, as only 10 participants with recent infection of COVID-19 
were examined. However, the goals of this study were a calculation 
of the VDP estimates using two different methods (semi-automat-
ed and DL) using the generated 80-slice 129Xe lung images. Another 
limitation is a generation of 80-slice images using a zero-filling ap-
proach. The “gained” resolution that is obtained is an “apparent” 
resolution because it was acquired from a zero-filling interpolation 
routine. This is a limitation as it can provide implications for the 
detection of ventilation defects. Finally, it is worth mentioning that 
to create a more solid deep learning-based segmentation frame-
work for the VDP calculation, it would be beneficial to test different 
segmentation architectures and compare them to select the best 
one that suits our data. To enhance our segmentation performance, 
we plan to experiment with various neural network architectures 
while also expanding the dataset size. 

Additionally, in this research study manual segmentation 
dataset was used to train the neural network. However, since the 
semi-automated segmentation is the current golden standard and 
the final results are compared with that method, the semi-automat-
ed segmentation outputs will be used as the training data for our 
future works. Furthermore, we recognize that inter-observer vari-
ability between manual or semi-automated segmentations may be 
demonstrated and can be a limitation of this work.

Conclusion

The method of semi-automated-lung-segmentation is widely 
employed in hyperpolarized-gas lung imaging and for calculating 
VDP. However, the 80-slice dataset requires a significant observer 
time (~45min to an hour). By acquiring VDP estimates using deep 
learning-based algorithms, we increase time efficiency and reduce 
possibilities of human error. This study demonstrated that deep 
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learning-based algorithms on 129Xe 80-slice static-ventilation imag-
ing of COVID-19 survivors provides a way to calculate time-efficient 
VDP estimates, which allows for rapid evaluation of ventilation het-
erogeneity. This means that semi-automated segmentation meth-
ods can be potentially replaced by fully automated methods.
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