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Abstract
Despite the production of state-level Colorectal Cancer (CRC) incidence statistics, there are currently no precision count variable models to 

understand localized incidence rates of CRC. This article aims to utilize a predictive county variable model with semi-parametric eigen spatial 
autocorrelation to map Hillsborough County-level CRC incidence rates using zip code census data. The first is an over-dispersed Poisson 
regression model that uses a negative binomial model with a non-homogeneously distributed mean to account for outliers. An eigenfunction, eigen 
decomposition, and spatial filter technique is presented. The dependent variable was the incidence percentage of CRC at the county level, while 
independent variables included sociodemographic indicators obtained from the U.S. Census Bureau. This study used sociodemographic information 
at the zip code level in Hillsborough County, Florida, to investigate the geographical aggregation of colorectal cancer cases.

Only the white population emerged as a significant predictor in the Poisson regression model, which demonstrated a non-dispersed paradigm. 
Several non-zero autocorrelated clusters were found across different zip codes in Hillsborough County using a second-order eigenfunction eigen 
decomposition. A spatial autocorrelation hot and cold spot analysis was conducted. This analysis identified zip codes with the highest and lowest 
predicted likelihood of CRC incidence. The identified zip code locations were 33578, 33511, and 33647 in southern Hillsborough County in the 
Brandon and Riverview area. The suggested method found hotspots for colorectal cancer where the white population is the main risk factor, which 
led to greater hotspot concentrations in Brandon and Riverview. Future studies should encourage routine colorectal cancer screening among 
individuals in these at-risk locations and investigate the method’s applicability at the state level.

Keywords: Colorectal cancer; Screening; Poisson; Spatial autocorrelation; Food insecurity; primary care;

 Hillsborough county

Received Date:  February 04, 2026

Published Date: February 17, 2026
*Corresponding author: Katlin Eaton, Samuel P. Bell III College of Public Health, 
University of South Florida, United States of America

http://dx.doi.org/10.33552/ABBA.2026.07.000657
https://irispublishers.com/index.php
https://irispublishers.com/abba/


Annals of Biostatistics & Biometric Applications                                                                                                               Volume 7-Issue 2

Citation: Katlin Eaton*, Aarya Satardekar, Namit Choudhari, Rishil Shah and Benjamin G. Jacob. Decomposition of Moran’s Coefficient 
to Detect Non-Multicollinear, Non-Zero, Eigen-Autocorrelated, Non-Gaussian Coefficients in Colorectal Cancer Estimator Determinants 
Epidemiologically Sampled in Hillsborough County, Florida. Annal Biostat & Biomed Appli. 7(2): 2026. ABBA.MS.ID.000657. 
DOI: 10.33552/ABBA.2026.07.000657.

Page 2 of 8

Introduction
Colorectal cancer (CRC) is a type of cancer found within the 

large intestine, also known as the colon, and the rectum, which 
is the last segment of the colon connecting to the anus. Polyps, 
or abnormal pockets of cellular growth, can form along the large 
intestinal walls and rectum, but these polyps can be removed 
from the colon while they are still benign. If these polyps are not 
removed in a timely manner, they can become cancerous, leading to 
rapid cell growth in other regions of the colon with the possibility 
of the cancer metastasizing (Moffitt Cancer Center, n.d.). Clinical 
presentations and symptoms can include rectal bleeding, blood 
in the stool, chronic constipation, diarrhoea, and changes in the 
frequency of one’s bowel movements (Moffitt Cancer Center, n.d.). 
The presence of these symptoms indicates that treatments such 
as a diagnostic colonoscopy, complete blood count panels, tumor 
marking tests, and biopsies need to be utilized (Moffitt Cancer 
Center, n.d.). Colorectal Cancer is diagnosed on a spectrum of stages 
from 0-4, with increasing complexities associated with each one.

Stage 0 refers to cancer cells being found in the lining of the 
colon that have not yet spread to surrounding lymph nodes, Stage 
1 to cancer cells being found in the lining and connective tissues 
beneath the colon’s mucous membrane, and Stage 2 to the cancer 
cells spreading beyond the colon lining into the muscles lining the 
abdomen. Stage 3 indicates the aggressive spread of the cancer to 
surrounding organs and lymph nodes, while Stage 4 indicates the 
distant spread to the lungs or liver [1]. When the cancer is diagnosed 
at any one of these stages, a combination of chemotherapy, surgery, 
and radiation therapy can be utilized to put the cancer into 
remission. Despite a plethora of emerging research and treatment 
methods of CRC, it is the third most commonly diagnosed cancer 
in the United States and the third leading cause of cancerous 
deaths [2]. Because this cancer often develops before the onset of 
symptoms, there are several routine screening methods used to 
detect cancerous polyps and to prevent their rapid progression.

The established screening recommendations for primary care 
physicians from the U.S. Preventive Services Task Force (USPSTF) 
are to provide Fecal Occult Blood Testing (FOBT) every year and 
regular colonoscopies to patients 45 years and older, except starting 
earlier for at-risk patients [2]. Although screening protocols have 
proven to be effective in early diagnosis in those with access, 
there are still significant discrepancies in accessibility and death 
toll. Unfortunately, over 30% of adults aged 50–75 years have not 
been screened for CRC according to national guidelines, which 
contributes to the cancer’s high morbidity and mortality rates 
[3]. Due to statistical discrepancies and rising death toll among 
specific ages and ethnicities, this warrants a deeper investigation 
into health outcomes related to the social determinants of health. 
Literature suggests that a culmination of local social determinants 
of health plays a significant role in preventative screening 
accessibility, especially regarding race, ethnicity, socioeconomic 
status, education level, health literacy, and health insurance status 
[4]. 

Preventive screening is vital in the early diagnosis and early 
surgical interventions that are used to put colorectal cancer 

into remission. A lack of screenings can lead to increased cancer 
severity, the use of highly aggressive surgical and chemotherapy 
treatments, metastatic complications due to unchecked cell 
growth, and overall increased mortality [5]. Although Hillsborough 
County statistics suggest an overall 43.9% incidence of CRC, non-
Hispanic black Americans display the greatest incidence and 
mortality of this largely preventable disease, which indicates a 
presence of multifactorial societal shortcoming, especially access 
to preventative and diagnostic screenings [6]. More specifically, 
data from the Surveillance, Epidemiology, and End Results (SEER) 
program reveal that Black Americans’ overall incidence of CRC is 
41.9 per 100,000, as compared to that of White Americans of 37.0 
per 100,000, which further indicates a persistent weakness in the 
preventive care of Black Americans [7]. 

In addition, Native Americans are second to Black Americans in 
mortality at 14.0 per 100,000, as compared to White Americans at 
12.9 per 100,000, which indicates other ethnicities’ shortcomings 
in the prevention of CRC [7]. Because the Hillsborough County 
incidence statistic of 43.9% does not consider racial, ethnic, and 
regional variations, the downstream statistics at the state, county, 
and zip code level will reveal greater implications of the social 
determinants of health on the incidence of CRC, especially regarding 
race, socioeconomic status, and insurance accessibility [8]. This 
study aims to identify leading barriers in preventative screenings 
for CRC and provides greater implications to create targeted, local 
screening initiatives at the zip code level in Hillsborough County. 
Spatial cluster detection is an important tool in Colorectal Cancer 
[CRC] cancer surveillance to identify areas of elevated risk and to 
generate subsequent hypotheses about the etiology [9].

Establishing precise county, zip code geolocation of an 
epidemiological, stratified, CRC geospatial cluster may predict the 
future trend of the cancer locally and inform control strategies. A 
spatial disease cluster is definable as an area with an unusually 
higher disease incidence rate National Cancer Institute: Cancer 
Clusters, but the term has been vaguely employed in the literature 
to refer to a population-based, cancer stratified, geographic 
location [henceforth geolocation] due to the complex interaction 
between multiple epidemiological co-factors believed to contribute 
to such an event [10]. County, zip code, colorectal cancer [CRC] 
cluster identification is heavily dependent on the accuracy of the 
methodological design employed to estimate the local relative 
risk as compared to the control [11]. A prognosticative geospatial 
cluster analysis of CRC incidence rates may also provide knowledge 
on the relationships between risk factors and county, zip code, and 
potential endemic geolocations.

This would enable policymakers to develop tailored 
interventions in areas where the CRC risk is greater. By statistically 
identifying and regression mapping available online racial, 
sociodemographic, and socioeconomic census data, evidence on 
county, zip code, clustering patterns of CRC incidence, specifically 
related to the geospatial aggregation /non-aggregation-oriented 
[i.e., hot and cold spot] geolocations and their respective estimator 
determinants may be determinable and prioritizable. In exploring 
mathematical hypotheses for leukaemia, Satardekar et. al. 
(2024) [12] proposed using a second-order eigenfunction eigen 
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decomposition for determining hot and cold spots of clusters of 
leukaemia stratified by racial, sociodemographic, and Land Use 
Land Cover [LULC] determinants. This was the first contribution 
in oncological modelling literature that an eigen-spatial filter 
eigenfunction algorithm was employed for predictive hot and 
cold spot modelling at the county and zip code level. Firstly, in 
Satardekar et al. (2024) [12], an over-dispersed Poisson count 
variable leukaemia regression model was constructed to generate 
a parameter hierarchy.

Thereafter, an eigenfunction, eigen-spatial filter algorithm 
identified potential, hyper/hypo-endemic, aggregation/non-
aggregation-oriented leukaemia clusters. The second-order 
eigenfunction eigen decomposition revealed multiple non-zero 
autocorrelated clusters throughout various zip codes in Hillsborough 
County. The hot spots were in 33647, 33578, and 33511, and the 
cold spots were in 33621, 33503, and 33530. The model identified 
leukaemia hotspot determinants as Whites and Asians aged 65+. 
Urban residential communities in 33647 were most vulnerable 
to leukaemia. The most common landscape variable associated 
with leukaemia was urban residential. Geospatial eigenfunction 
eigen-decomposition uncertainty-oriented treatment may be 
applicable to an empirical dataset of county zip code, racial, 
sociodemographic, and socioeconomic estimator determinants to 
improve understanding of a range of CRC-related issues, including 
the mechanisms driving local hyper/hypo-endemic, hot and cold 
spot, stratified, and potential determinants.

An oncologist or researcher in practice, could essentially 
interpret eigen-spatial autocorrelation in a CRC county, zip code hot 
and cold spot, prognosticative epidemiological model in multiple 
different ways: self-correlation, map pattern, a diagnostic tool, a 
missing variables surrogate, a spatial process mechanism, a spatial 
spill over effect, an outcome of areal unit demarcation (re. the 
MAUP), redundant information, and a nuisance parameter. These 
statistical methods can be combined with environmental factors 
exposure to understand county zip code epidemiological drivers of 
local CRC; however, such studies remain limited for CRC in high-
incidence areas due to erroneous forecasting of aggregation/non-
aggregation, oriented, potential, hyper/hypo-endemic estimator 
determinants [13]. Regrettably, statistics currently utilized in 
CRC research are content with the traditional linear regression to 
examine determinant non-independence (i.e., multicollinearity), 
zero-inflated non-homoscedasticity (i.e., uncommon error 
variance), non-Gaussian zero autocorrelation (i.e., geographic 
chaos), and other violations of regression assumptions in space and 
geography.

Linear regression cannot denoise spatial error in models due 
to violations of regression assumptions in space and geography 
[14]. The decomposition of Moran’s coefficient into uncorrelated, 
eigen-orthogonal map pattern components may reveal global 
heterogeneities necessary to capture noisy, stochastic, latent 
chaotic spatial biasness [e.g., skewed, zero, eigen-autocorrelated 
heteroscedastic multicollinear coefficients] embedded 
inconspicuously in regressively prognosticated, stratifiable CRC 
county, zip code epidemiological model forecast determinants. 
Moran’s I is a measure of spatial autocorrelation [15]. Spatial 

autocorrelation is characterized by a correlation in a signal 
among nearby locations in space. Spatial autocorrelation is more 
complex than 1 one-dimensional autocorrelation because spatial 
correlation is multi-dimensional (i.e., 2 or 3 dimensions of space) 
and multi-directional [14]. Moran’s index is an important statistical 
measure used to quantify the presence or absence of residual, 
zero/non-zero, eigen-spatial autocorrelation, thereby determining 
the selection orientation of spatial statistical uncertainty-oriented 
algorithmic denoising methods.

Moran’s index is chiefly a statistical measurement rather than 
a mathematical model [15]. In this experiment, we employed 
the Spatial Autocorrelation Moran’s I tool in ArcGIS ProTM to 
measure residual, zero autocorrelation [i.e., geographic chaos] 
in an empirical, eigen-decomposed, CRC-related, zip code 
dataset of sociodemographic and socioeconomic determinants 
in Hillsborough County. Using the set of stratified, geosampled 
capture points, diagnostic, feature attributes of the covariates, 
this tool evaluated whether eigenvectors derived from a weighted, 
aggregation/non-aggregation-oriented, CRC-related hyper/hypo-
endemic model were clustered, dispersed, or random at the county 
zip code level. We assumed the tool could calculate the Moran’s I 
value and both a z-score (i.e., standard deviations) and a p-value 
to evaluate the significance of the eigen-orthogonalized, diagnostic, 
zip code-stratified, CRC determinants. Our assumption was that 
a second-order eigenfunction eigen decomposition would reveal 
multiple non-zero autocorrelated geospatial clusters throughout 
various zip codes in Hillsborough County. 

There has been increasing interest in the analysis of 
geographically distributed, diagnostically stratifiable CRC 
data, motivated by a wide range of research problems, such as 
the inability to quantify violations of regression assumptions 
in space and geography in causative, hyper/hypo-endemic, 
regressable covariates of county, zip code stratifiable, hot and 
cold spot epidemiological geolocations. Traditionally, two types 
of correlations are involved in epidemiological, CRC-related, 
regression, estimator determinant models: the correlation 
between multiple outcomes at one hot or cold spot geosampled, 
capture point geolocation, and the spatial correlation between the 
geolocations for one particular outcome. Unfortunately, county 
or district-level, aggregation/non-aggregation-oriented, zip code 
stratified, estimator determinant, prognosticative, epidemiological 
CRC regression models contributed to the literature only consider 
one type of correlation while ignoring or inappropriately modeling 
spatial count data with dichotomous [i.e., logistic] probabilities.

The main problem with logistic binary probabilities for 
optimally regressively quantifying county or district-level 
CRC forecast regression models is that the probability of the 
positive outcome is bounded between 0 and 1. This means that 
while stratifiable, county, CRC, prognosticative, epidemiological 
modelled determinants can provide insights into the likelihood of 
a geospatially regressively detected zip code, hot or cold spot, they 
cannot predict the exact number of occurrences. One of the key 
challenges in logistic regression is the interpretation of the odds 
ratio, which compares the probability of success to the probability 
of failure [16]. Odds ratios greater than 1 indicate a higher likelihood 
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of the event occurring, while those less than 1 suggest a lower 
likelihood. However, this interpretation is not straightforward, as 
it would not directly translate to numerical discrete integer values 
in a county or zip code, stratifiable, hot or cold spot, empirical, 
geosampled, explanatory, estimator, determinant CRC dataset. 
Another challenge in binary logistic probabilities is the handling of 
outlier data, which can skew the results of the regression model 
and estimator determinants.

Unlike linear regression, logistic regression does not assume 
a linear [i.e., non-spatial] relationship between the dependent and 
independent variables, making it non-robust for quantification of 
linear relationships in an epidemiological forecast-oriented, county, 
zip code, aggregation/non-aggregation-oriented CRC model. 
Furthermore, it can be computationally expensive to fit stratified, 
diagnostically stratifiable, county, CRC-related, capture point 
vulnerability models with multiple, zip code stratifiable, hot and 
cold spot, cluster causation, explanatory, estimator determinants, 
which can be a limitation in certain prognosticative regression 
modelling scenarios. Unfortunately, currently, nonlinear CRC and 
epidemiological regression models contributed to the literature 
are not robust to stochastic randomness of errors. Stochastic error 
(or random error) is the variability in measurements that cannot 
be predicted or eliminated [14]. It is inherent in any measurement 
process in the CRC forecast regression model. The evidence comes 
from cohort studies in categorical, linear, and nonlinear dose–
response meta-analyses.

For example, Dagfinn et al. (2011) [17] included 19 prospective 
studies that reported relative risk estimates and 95% confidence 
intervals (CIs) of CRC associated with fruit and vegetable intake. 
Random effects models were used to estimate summary relative 
risks. The summary relative risk for the highest vs the lowest 
intake was 0.92 (95% CI: 0.86–0.99) for fruit and vegetables 
combined, 0.90 (95% CI: 0.83–0.98) for fruit, and 0.91 (95% CI: 
0.86–0.96) for vegetables (P for heterogeneity= .24, .05, and .54, 
respectively). The inverse associations appeared to be restricted 
to colon cancer. In linear dose–response analysis, only intake of 
vegetables was significantly associated with colorectal cancer risk 
(summary relative risk = 0.98; 95% CI: 0.97–0.99), per 100 g/d. 
However, significant inverse associations emerged in nonlinear 
models for fruits (nonlinearity < .001) and vegetables (nonlinearity 
= .001). The greatest risk reduction was observed when intake 
increased from very low levels of intake. Based on a meta-analysis 
of prospective studies, there is a week but statistically significant 
nonlinear inverse association between fruit and vegetable intake 
and colorectal cancer risk.

There was no evidence of uncertainty residual testing of 
the heterogeneity of the model forecasts; hence, there was no 
evidence of small-study bias in the estimated determinants. 
Although nonlinear least squares estimation models (Exponential, 
Gompertz, Verhulst, and Weibull) have been computed for 
quantifying errors in some epidemiological, CRC, and county 
regression models contributed to the literature, the estimates from 
these paradigms have not been able to improve the probability 
modeling of stratified epidemiological vulnerability hot and cold 

model forecasts using these methods at the zip code level. Our 
objectives in this experiment were to generate a residual eigen-
autocorrelation map and to conduct a non-Gaussian uncertainty-
oriented test to quantitate violations of regression assumptions 
in space and geography for precisely statistically delineating zip 
code, stratifiable, hot, and cold geolocations and their respective 
estimator determinants. In so doing, we assumed we would be able 
to implement a social messaging platform targeting potential CRC 
patients in Hillsborough County, Florida, USA.

Methodology
To alleviate stratified CRC uncertainty estimator determinant 

hot and cold spot, non-Gaussian noise due to violations of 
regression assumption in space and geography at the county, 
zip code level, we adopted a hierarchical, generalizable, non-
frequentist, uncertainty-oriented, prognosticative model 
approach. We residually investigate zero autocorrelation, 
heteroscedasticity, and multicollinearity in an empirical dataset 
of multivariate, geosampled, county, georeferenced, stratified, 
racial, sociodemographic, and socioeconomic, epidemiological 
estimator determinants geosampled in Hillsborough County at 
the zip code level. Our assumption was that by denoising multiple 
types of uncertainty-oriented, non-Gaussian, deviant distribution 
trajectories, we would be able to capture unobserved heterogeneity 
in the regressed aggregation/non-aggregation-oriented, potential 
hyper/hypo-endemic, CRC prognosticative, county zip code, 
estimator determinant models dissimilar to those presented in 
the literature. Our research hypothesis was that a second-order 
eigenfunction eigen decomposition and a non-frequentistic semi-
parametric, prognosticative, regression, uncertainty-oriented 
model can elucidate county-level, CRC vulnerable zip code 
populations by prioritizing stratifiable, racial sociodemographic 
and socioeconomic covariate heterogeneity in an empirical dataset 
of census stratified estimator determinants to identify the spatial 
distribution of high-risk populations in Hillsborough County.

Population and Sample
Part of the Tampa–St. Petersburg–Clearwater Metropolitan 

Statistical Area, Hillsborough County, is situated in the west-central 
region of the U.S. state of Florida. With 1,459,762 residents, this 
county is among the most populous in the state, according to the U.S. 
Census Bureau. With an annual growth rate of 3.7%, the population 
of Hillsborough County was expected to be 1,513,301 in 2022 
(United States Census Bureau, 2020) [18]. The county’s total area 
is 1,266 square miles (3,279 km2), of which 246 square miles (637 
km2) (19.4%) are covered by water and 1,020 square miles (2,647 
km2) are land (Florida Water Atlas, 2025) [19]. Several significant 
bodies of water, including the Little Manatee River, the Hillsborough 
River, and the Alafia River, are located in Hillsborough (Florida 
Water Atlas, 2025) [19]. Over 84% of the county’s total land area, or 
about 888 square miles (2,300 km2), is unincorporated. 163 square 
miles (420 km2) are made up of municipalities. The county is 
located halfway along Florida’s west coast, according to its current 
borders. There are 55 standard zip codes in Hillsborough County, as 
seen in Figure 1 (Hillsborough County Florida ZIP Codes - Map and 
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Full List, 2025) [20]. The American Community Survey (ACS) U.S. 
Census data from 2020 was used to collect zip code-level data for 
this study (United States Census Bureau, 2020) [18]. The county-

level incidence of CRC was obtained from Florida Health Charts. 
(www.flhealthcharts.gov, n.d.).

Study Variables
Table 1: Global Moran’s I Diagnostic Summary of Georeferenced 
Zip Code Stratified Hot/Cold Spot Autocorrelated County Level CRC 
Incidence.

Statistic Value 

Moran’s Index 0.01

Expected Index -0.02

Variance 0.01

z-score 0.42

p-value 0.678

This study constructed zip code probabilities from population-
stratified CRC cases related to socioeconomic status, age, education 
level, insurance status, and racial-related covariates (Table 1), 
which were acquired from the U.S. Census Bureau (2020) [18]. To 
obtain the dependent variable that was regressed against with the 
covariates throughout this study, a population stratification was 
completed per zip code. To calculate these values, the incidence of 
CRC in Hillsborough County, 43.9%, was set equal to the estimated 

population of Hillsborough County, 1,580,000. Each zip code 
population was then set equal to an unknown variable X. To acquire 
X, the following equation was used for each zip code: X=(43.9 * Zip 
Code Population)/ 1,580,000. This allowed for a predictive CRC 
incidence value to be found for each zip code in our area of study. 
Our covariates are centered around sociodemographic details: age 
45+, race, education, and insurance status.

Study Instruments
We calculated Moran’s I Scatterplot in PySal. We standardized the 

sampled estimator determinants as ( )( ) ( )/z x mean x std x= −

. This rendered the standardized value of x  for each zip code in 
Hillsborough County. We subsequently calculated the spatial lag. 
This was done by determining the average of neigh boring values 
for each zip code region, weighted by spatially sampled CRC 
racial, sociodemographic, and socioeconomic stratified weights. 

_ *w z W z=  where: W  was the spatial weight matrix (e.g., 
queen or rook contiguity). * Denoted matrix multiplication. and 

_w z  was the spatial lag of the standardized CRC stratified 

Figure 1: Map of Hillsborough County by Zip Code.
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determinants. We plotted the scatterplot X-axis. and the Y-axis. We 
added a regression line. The slope of this line was Moran’s I.

The Moran’s I statistic for quantitating zero/non-zero eigen-
spatial autocorrelation was ,

1 1

20

1

n n

i j i j
i j

n

i
i

w z z
nI
S z

= =

=

=
∑∑

∑

 where 1Z  was the deviation 
of a racial, sociodemographic or socioeconomic stratified, CRC, 
county, zip code for feature I  from its mean ( )1 0x X− , wij  is 
the weight quantitated between i  an j  where n is equal to the 
number of determinant features and S0 is the aggregate of all the 
spatial weights 

0 ,
1 1

n n

i j
i j

S w
= =

=∑∑ .

The Python Code for calculating Moran’s I in PySAL was:

import geopandas as gpd

import libpysal

from esda.moran import Moran

from splot.esda import moran_scatterplot

gdf = gpd.read_file(“your_shapefile.shp”)

x = gdf[‘your_variable’].values

# Create spatial weights

w = libpysal.weights.Queen.from_dataframe(gdf)

w.transform = ‘r’

# Calculate Moran’s I

mi = Moran(x, w)

# Plot scatterplot

moran_scatterplot(mi)

Data analysis
A spatial autoregressive model [SAR] model specification 

was subsequently constructed to describe the autoregressive 
variance, non-Gaussian. zero autocorrelated, non-multicollinear, 
heteroscedastic, potentially asymptotically biased, aggregation/
non-aggregation-oriented determinants. For non-time series-
dependent forecast modeling estimator determinants, the SAR 
model furnishes an alternative specification [14]. Here, the SAR 
model was written in terms of matrix W The resulting SAR model 
specification took on the following form:

( )1 1 ,Y WYµ ρ ρ ε= − + +  (2.4)

where µ  was the scalar conditional mean of Y , and ε  
was an n-by-1 error vector whose elements were statistically 
independent and identically distributed (i.i.d.) normally random 
variates. The spatial covariance matrix for equation (2.4), fit 
the diagnostic, CRC eigen-decomposed i.d.d. covariates using 

( ) ( ) ( )( )l ' l ' 1 2E Y Y I W I Wµ µ ρ ρ σ− − = ∑ = − − −      
, 

where ( )E •  denoted the calculus of expectations, I was the 
n-by-n identity matrix denoting the matrix transpose operation, and 

2σ  was the error variance. However, when a mixture of Positive 
Spatial Autocorrelation (PSA) and Negative Spatial Autocorrelation 
(NSA) is present in a non-time series, dependent model, a more 
explicit representation of both effects leads to a more accurate 
interpretation of empirical results [14]. Alternatively, the excluded 

values may be set to zero, although if this is done, then the mean 
and variance must be adjusted.

Here, two varying, potentially non-homoscedastic, 
multicollinear, asymptotical asymmetrical, aggregation/non-
aggregation-oriented, autoregressive, hyper/hypo-endemic, 
CRC stratified parameters appeared in the covariance matrix, 
eigenvector, eigen-spatial filter, and regression model specification. 
The model specification was subsequently transformed to

( )( ) 1 2' ,diag diagI W I Wρ ρ σ
−

 ∑ = − < > − < > 
 (2.5)

where the diagonal matrix of the parameters, 
diagρ< > , 

contained the uncertainty-oriented autoregressive parameters: 
ρ+  for those CRC stratified variable pairs displaying positive 

spatial dependency, and ρ  for those pairs displaying negative 
dependency.

A misspecification perspective was subsequently employed 
for performing an eigen-decomposition uncertainty-oriented 
estimation analyses using the sampled, county, zip code stratified 
covariates. The model was built using the  *y X β ε= +  (i.e., 
regression equation) assuming the geosampled CRC data had 
autocorrelated disturbances.

Results
The county zip code geosampled CRC epidemiological data 

was decomposed into a white-noise component, ε  , and a set of 
unspecified zip code regression models that had the structure

*

y X E
ε

β γ ε
=

= + + in the eigen-spatial autoregressive model. We found 
that white noise in a regression model was a univariate discrete-
time stochastic process whose terms were independent and 
independent (i.i.d.) with a zero mean. In this experiment, the 
misspecification term in the county, CRC zip code prognosticative 
regression model was Eγ .

The upper and lower bounds for the eigen-spatial autoregressive 
model matrix generated employing Moran’s I were subsequently 
deduced by ( )max /1 1Tn Wλ and ( )min /1 1Tn Wλ where maxλ and

minλ , which in this experiment were the extreme eigenvalues of 
HWHΩ = in the CRC stratified, epidemiological model, eigen-

decomposed eigen-spatial, filter, synthetic, eigen-orthogonal 
eigenvectors. The eigenvectors of Ω  were vectors with unit 
norm maximizing Moran’s I. The eigenvalues of this matrix were 
non-asymptotically synthesizable from the semi-parameterized, 
diagnostic, empirical geosampled dataset, which was equal in 
value to the Moran’s coefficients derived from the residual eigen-
autocorrelation post-multiplied by a constant. Eigenvectors 
associated with high positive (or negative) eigenvalues have high 
positive (or negative) autocorrelation (Griffith 2003). The synthetic, 
eigen-function, eigen-decomposed, eigen-orthogonal, eigenvectors 
associated with extremely small hierarchical, diffusion-related, CRC, 
stratified, county zip code sampled estimator determinant discrete, 
integer values corresponded to non-zero eigen-autocorrelation 
(i.e., z scores >0) and were suitable for defining spatial structures 
corresponding to zip code aggregation / non-aggregation-oriented 
sites (i.e., stratified hot/cold spots of potential hyper/hypo-
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endemic CRC patients).

The diagonalization of the geospatial uncertainty-oriented, 
regression weighted matrix generated for quantitating the 
autocovariance of the non-time series, dependent, potential, 
spatially biased, aggregation/non-aggregation-oriented, CRC 
stratified, non-zero, autocorrelated diagnostic determinants 
consisted of finding the normalized vectors iu  stored as columns 
in the matrix [ ]1... nU u u= , This satisfied ( )1... ndiag λ λΛ = ,  2|| || 1T

i i iu u u= =  
and  0T

i ju u =  for i j≠ . Note that double centering of Ω  implied 
that the eigen-orthogonalized eigen-spatial filter eigenvectors 
rendered from the eigen-decomposed, CC stratified, county, zip code 
exogenous, regressors were centered, and at least one eigenvalue 
was equal to zero. Introducing these eigenvectors in the original 
formulation of Moran’s I in the eigen-semiparametric, eigen-spatial 
autoregressive model led to:

( )

1

1 1 1 1

1 1

T T T

T T T T

n
T T

i i i
i

T T

n x HWHx n x U U xI x
W x Hx W x Hx

x u u x
n
W x Hx

λ
=

Λ
= =

=
∑

 (3.1)

The autocovariance provided the covariance of the process at 
multiple capture points, which was closely related to the eigen-
autocorrelation. We centered vector z Hx=  and employed the 
properties of idempotence of H , an equation which was then 
equivalent to

( )
2

1 1
2

|| ||

1 1 1 1 || ||

n n
T T T

i t i i i
i i

T T T

z u u z u z
n nI x
W z z W z

λ λ
= == =
∑ ∑

 (3.2)

As the eigenvectors iu  and the vector z  were centered in 
the potential, georeferenceable, aggregation/non-aggregation-
oriented, hyper/hypo-endemic, county, zip code, vulnerability-
oriented, regression model, forecast equation (3.2) was rewritten:

( )
( ) ( )

( )

( )

2

1

2

1

, var

1 1 var

,
1 1

n

i i
i

T

n

i iT
i

cor u z z n
nI x
W z n

n cor u z
W

λ

λ

=

=

=

=

∑

∑

 (3.3)

where was the number of null eigenvalues of ( )1rΩ ≥ . These 

eigenvalues and corresponding eigenvectors were removed from 
Λ  and U , respectively. Equation (3.3) was then strictly equivalent 
to:

( ) ( )2

1
,

1 1

n r

i iT
i

nI x cor u z
W

λ
−

=

= ∑  (3.4)

Moreover, it was demonstrated that Moran’s I for a given 
eigen-spatial filter eigenvector iu  was equal to ( ) ( )/1 1T

i iI u n W λ=

. So, the equation was written ( ) ( ) ( )2

1
,

n r

i i
i

I x I u cor u z
−

=

=∑  in R. The term 
( )2 ,icor u z  represented then became part of the variance of z that 

was explainable by iu  in the prognosticative, CRC, regression, 
epidemiological model forecasts when i i iz u eβ= + . The quantity 
was equal to ( )2 / vari n zβ . By definition, the eigenvectors ui were 
eigen-orthogonal, and therefore, regression coefficients of the linear 
models 

i i iz u eβ= +  were those derivable from the prognosticative 
CC regression model ....i i n r n rz U u uβ ε β β ε− −= + = + + + .

The maximum value of 1 was quantifiable by all the variations 
of z, as parsimoniously expounded by the eigenvector 1u , which 
corresponded to the highest eigenvalue 1λ  in the weighted, eigen-
autocorrelation, uncertainty matrix constructed from the non-time 
series sampled, county, zip code estimator determinants. Here, 

( )2 , 1icor u z =  (and ( )2 , 0icor u z =  for 1i ≠ ) and the maximum 
value of I was intuitively deducible for Equation (3.4), which was 
equal to ( )max 1 /1 1TI n Wλ= . The minimum value of I in the error 
matrix was obtainable as with all the variations of z, which in this 
experiment was definable by the eigenvector 

n ru −
 corresponding 

to the lowest eigenvalue n rλ −  extractable in the epidemiological 
forecast model renderings. This minimum value was equal to 

( )min /1 1T
n rI n Wλ −= . If the sampled, explanatory, CRC county, zip 

code sampled prognosticative variable was not definable due 
to the presence of heteroscedasticity, multicollinearity, or non-
asymptoticalness, the part of the variance explained by each 
eigenvector was equal, on average, to ( )2 , 1/ 1icor u z n= − . Because 
the forecasted explanatory, CRC stratified diagnostic, county, zip 
code, geosampled epidemiological variables in z were randomly 
permuted, it was assumed that we would obtain this result Table 
2-4.

Table 2: Poisson Model Summary Results.

Coefficients Estimate Std. Error z-value Pr(>[z])

(Intercept) -1.34e+0 4.37e-1 -3.07 0.002**

Whites 5.27e-5 2.52e-5 2.08 0.037*

American Indian and Alaska 
Native -1.59e-3 2.43e-5 -0.65 0.512

Asian -8.26e-6 7.27e-5 -0.11 0.909

Black 3.96e-5 3.60e-5 1.09 0.272

Hispanic or Latino 3.02e-5 2.93e-5 1.03 0.302

Natie Hawaiian or Other 
pacific Islander 1.56e-5 5.47e-5 0.29 0.770

Note: Pr(>|z|) denotes two-sided p-values from the Poisson regression. Asterisks indicate statistical significance (*p < 0.05; **p < 0.01).
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Table 3: Variance Inflation Factor (VIF).

Covariant VIF Value

Whites      1.65

Asian      1.57

Hispanic or Latino      1.71

American Indian or Alaska Native      2.26

Black       1.64

Native Hawaiian or Other Pacific 
Islander      1.09

Table 4: Model Fit Parameters.

Akaike Information Criterion 
(Poisson)

Bayesian Information Criterion 
(Poisson)

113.85      127.90

The RE model incorporated eigenfunction eigenvectors 
derived from a geographic connectivity matrix to account for SSRE 
and SURE using standardized z scores stratified by CRC yield, 

due to spill-over, hierarchical diffusion of the CRC interpolated 
determinants at the county, zip code level. We calculated the 
conditional probabilities and derived the conditional distribution 
functions for the regressed diagnostic determinants, including 
the probability density function, the cumulative density function, 
and the quantile function. A count variable random variable mean 
response specification was extractable from the sampled CRC 
determinants. The expectation attached to the equation, i.e., RE 
≡ SURE, was investigated. The estimator determinants possessed 
trivial SSRE components. Hence, in the semiparametric eigen-
autocorrelation context, the SSRE component was modeled with 
a conditional autoregressive specification, which revealed all 
the violations of regression assumption in space and geography 
[heteroscedastic and multicollinear coefficients] in the county zip 
code prognosticated, racial, sociodemographic and socioeconomic, 
CRC, hot and cold spot, stratified, and estimator determinants as 
displayed in Figures 2&3.

Figure 2: Spatial Autocorrelation Report.
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Discussion
We employed space-time model specifications, one based upon 

the Generalized Linear Mixed Model (GLMM), using the Moran 
eigenvector space-time filters to optimally quantitate violations of 
regression in space and geography in the multiple CRC, stratified, 
georeferenced racial sociodemographic and socioeconomic, 
geosampled, county zip code, LULC classified epidemiological 
observational evidential prognosticators. We identified eigen-
optimization uncertainty-oriented algorithms to fit the varying 
stratified, forecast-oriented, county zip code stratified CRC 
regression model to a training dataset of non-asymptotical, 
multicollinear, skew heteroscedastic, zero autocorrelated 
estimator determinants. We were able to quantify how regression 
functions characterized spilled-over hierarchical diffusion of CRC 
in Hillsborough County at the zip code level. We were able to 
predictively prioritize and geospatially statistically precisely target 
the potential, hyper/hypo-endemic, aggregation/non-aggregation-
oriented, capture point, county-zip code CRC stratifiable explanatory, 
racial sociodemographic, and socioeconomic determinants.

The Moran spatial filtering technique employs an eigenfunction, 
second-order, eigen-spatial filter eigen decomposition of the REs 
in varying, non-temporally dependent, diagnostically stratifiable, 
county, zip code epidemiological sampled, racial, sociodemographic, 
and socioeconomic stratified estimator determinants rendered 

uncertainty-oriented SSREs and SURE regression components, 
hence denoising all the CRC stratified determinants. The 
Poissonian regression, spatial autocorrelation, and interpolated 
maps generated for Hillsborough County zip codes reveal a greater 
incidence of colorectal cancer in the Brandon and Riverview areas 
as compared to lower incidence rates in eastern Plant City, South 
Tampa, and northern Lutz. These localized findings are significant 
in comparison to previous studies that have similarly used 
regression modeling to assess correlations between socioeconomic 
status and CRC, but no study has generated zip code assessments of 
the incidence of CRC. Previous studies from the American Cancer 
Society suggest lower socioeconomic status and education levels to 
be statistically significant risk factors in developing CRC [21].

However, applications in Hillsborough County suggest a more 
complex paradigm, specifically for White Americans residing in 
the Brandon and Riverview area (Zip codes 33578, 33511, 33647). 
These findings demonstrate a higher risk for being a potential 
patient with CRC, as seen in Figure 3. The greater Riverview and 
Brandon incidence area suggests a significant need for colorectal 
cancer screening in this region of Hillsborough County, as 
compared to other regions where primary screening services may 
be more established. According to the National Health Resources 
and Services Administration, the Health Professional Shortage 
Area (HPSA) database is a tool used to identify primary care 

Figure 3: Hot and Cold Spot Map CRC Cases in Hillsborough Country.
Note: Zip Codes of significant hots spots include 33578, 33511, and 33647 while cold spots include 33621, 33616, 33549, 33565, and 33567.
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physician shortages across all counties within the State of Florida 
(HRSA, 2025) [22]. A database search on Hillsborough County 
HPSA designations revealed that many Federally Qualified Health 
Centers (FQHC), including Suncoast Community Health centers 
in the Brandon Riverview area, display the greatest shortages, 
which accounts for the red hotspot as seen in Figure 3 and greater 
concentration of CRC incidence in the 33511zip code (HRSA, 2025) 
[22].

In addition, the Tampa Family Health Centers are another 
widespread FQHC with this same designation, which accounts 
for the orange, moderate incidence of CRC as seen from Brandon 
to the northeast regions of Hillsborough County. With this, many 
white individuals in these areas had a greater, more significant 
risk of developing CRC as compared to other races, ethnicities, 
socioeconomic status, and education levels as calculated in the 
vulnerability index, with a value less than 0.01 indicating statistical 
significance. Limitations in this calculation could result from 
insufficient census data produced from the State of Florida, specific 
to Hillsborough County, but additional considerations should 
include access to primary care physicians at facilities with HPSA 
designation, nutritional accessibility, food insecurity, and previous 
cancer diagnosis. The middle-class white populations developing 
CRC at a greater rate in southeast Tampa in comparison to northern 
and western Hillsborough County, could be struggling with 
inconsistent access to HPSA primary care physicians and routine 
screenings.

Routine screenings beginning at age 45 - 50 are vital in the 
detection of early CRC developments and timely intervention, but 
delaying these non-invasive screenings can lead to an increased 
detection at advanced stages. Advanced CRC clinical presentations, 
such as rectal bleeding, blood in the stool, or chronic constipation, 
could persuade patients to visit a primary care physician if they are 
not already seeing their provider at least once a year, but have a 
great likelihood of becoming an advanced diagnosis with a greater 
mortality rate. This pattern of indifference in regard to primary 
care screenings could contribute to greater CRC incidence rates, 
and further stresses the need for primary care education, especially 
when it comes to all types of preventative cancer screenings. This 
data leads to the conclusion that health education, health literacy, 
and primary care interventions should target the Riverview 
and Brandon zip codes. In addition, nutritional access and food 
insecurity rates are critical considerations to be made in assessing 
CRC vulnerability.

A significant or prolonged lack of fiber in one’s diet leads to 
significant deficiencies and disruption of a healthy gut microbiome, 
which can be associated with increased risk of developing CRC. 
Understanding rates of food insecurity in the Riverview and 
Brandon areas can give greater insight into the elevated rates of 
CRC cancer in the region and may aid as an additional means of 
introducing primary interventions beyond clinical screenings. 
For example, local hospitals such as BayCare have implemented 
intake food insecurity screenings for all patients and have 
introduced Food Rx programs to accommodate these nutritional 
discrepancies (BayCare, 2025) [23]. These inventions are aimed 

at improving health outcomes beyond initial clinical presentation 
and addressing long-term health complications. Because CRC falls 
within long-term health outcomes, BayCare’s partnership with 
Feeding Tampa Bay can have a positive influence on the incidence 
of CRC and is a potential template for future interventions specific 
to the Brandon and Riverview area (BayCare, 2025) [23]. Further 
connections should be made in understanding the relationship 
between food insecurity and the greater risk and development of 
CRC in Hillsborough County.
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