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Abstract
In this paper, an analytical framework of the mathematical model for assessing the epidemic dynamics of the latent and active stages of 

COVID-19 disease is proposed. The population group was divided into six categories. The biological feasibility of the developed mathematical model 
was studied by verifying the properties such as the existence, boundedness and the non-negativity of the solutions. The analytical behaviour of the 
disease-free equilibrium point, the basic reproduction numbers, and the local stability analysis for the latent and active stages of COVID-19 were 
studied using the linearization approach. The results show that the solutions of the system outcomes are positive and finite within the region, with 
the disease-free equilibrium point, the population size is stable. The basic reproduction number depends on two distinct transmission pathways: 
the latent and the active COVID-19 effective contact rates, suggesting that the COVID-19 latent (asymptomatic) stage contributes in the disease 
transmission patterns. This study demonstrates the importance of considering the latent stage of a disease in the modelling of a disease dynamics 
and its implications for epidemiological studies.
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Introduction

The COVID-19 pandemic started in Wuhan, China, in December 
2019 [1]. This disease, caused by Severe Acute Respiratory 
Syndrome Corona Virus 2 (SARS-CoV-2), recorded in its first week 
of pandemic, asymptomatic cases of barely 1%. Among infected 
people, 81% had mild symptoms, 14% were severe, and 5% were 
critical [2]. Since its emergence, COVID-19 has spread globally, 
infecting over 676 million people, resulting in 6.8 million deaths, 
and promoting the administration of 13.3 billion vaccine doses, with 
economic losses amounting to trillions of USD [3,4]. The epidemic 
dynamics of COVID-19 are characterized by presymptomatic 
transmission events, suggesting a shorter latent period compared  

 
to the incubation period [5]. The latent period is typically estimated 
as the time between infection and detectable virus in a respiratory 
specimen. Common symptoms of SARS-CoV-2 infection include 
fever, cough, and fatigue, with some individuals experiencing 
stuffy or runny nose and diarrhoea. Severe cases can lead to acute 
respiratory distress syndrome, septic shock, and death [6]. As a 
highly contagious infectious disease, its sources of infection include 
both confirmed cases and also asymptomatic carriers [6,7].

Asymptomatic patients of SARS-CoV-2 infection are often 
without clinical symptoms, but test positive for the viral nucleic acid 
test. Most asymptomatic patients are found during the screening 
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of close contacts. Because the laboratory tests are performed at 
an early stage, these asymptomatic cases go on to develop illness 
after screening. According to [8], the most common symptoms of 
COVID-19 include fever, cough, and fatigue, while Symptoms of 
severe COVID-19 disease are high temperature, loss of appetite, 
shortness of breath, persistent pain in the chest, etc. People of all 
ages who experience any of the aforementioned symptoms should 
seek medical care immediately, as some people may experience 
severe illness, which can lead to hospitalization and death. The 
primary mode of transmission of COVID-19 is through respiratory 
droplets generated during talking, coughing or sneezing by an 
infected person, which can land on surfaces or directly on another 
person’s mouth, nose, or eyes, facilitating infection.

Therefore, it is important to maintain physical distance, 
wear masks, and practice good hand hygiene to reduce the risk 
of transmission. Various models have been developed to explain 
COVID-19 dynamics, simulating strategies to mitigate the outbreak 
and reduce the peak in daily cases, hospital admissions, and 
fatalities. [9] described modelling COVID-19 spread in Germany, 
its assessment, and possible scenarios. They simulated different 
strategies for the mitigation of the current outbreak, to help in 
slowing down the spread of the virus and reducing the peak in 
daily diagnosed cases. Their results showed that a partial and 
gradual lifting of introduced control measures could be possible if 
accompanied by further increased testing activity, strict isolation 
of detected cases, and reduced contact with risk groups. [10] 
developed mathematical modelling of COVID-19 dynamics in 
Ukraine.

Their model included age-stratified disease parameters, 
as well as age-specific and location-specific contact matrices, 
to represent contacts. Their result showed that the model can 
provide an accurate short-term forecast for the numbers and age 
distribution of cases, and deaths. Mathematical models are crucial 
for understanding transmission dynamics of infectious diseases 
and evaluating intervention strategies, with studies employing 
compartmental models like SEIR, SIQR, and other extensions 
[11,12]. However, many models overlook the latent COVID-19 stage 
and the asymptomatic case diagnosis. This study addresses this gap 
by incorporating the COVID-19 latent stage and clinical diagnosis 
of asymptomatic individuals, investigating transmission dynamics 
using specific epidemiological classes to estimate key metrics, 
by proposing and studying the COVID-19 Susceptible, Latent, 
Active, Infectious latent, Infectious active and Recovered (SLAIIR) 
mathematical modeling. The paper is structured as follows: Section 
1 introduces latent and active COVID-19 disease, Section 2 discusses 
methodology, Section 3 presents model analysis, Section 4 covers 
results, and Section 5 concludes the work.

Methodology

This section discusses the methods used in the COVID-19 SLAIIR 
model’s mathematical modeling. The model’s solutions include 
positivity and boundedness, as proposed in [13], which proves that 
the system’s solutions are positive and bounded. The integration 
factor method from [14] transforms the differential equations into 
an easily integrable form, ensuring biological meaningful results. 

The Disease-Free Equilibrium (DFE) point, is found by solving the 
right-hand side of the system of ( ) ( )( )4 a f−  to zero, representing 
a population state where COVID-19 is no longer present. This is 
typically characterized by zero infected individuals. The basic 
reproduction number, 0R , is a key parameter in epidemiological 
models, de ned as the number of secondary infections from a 
single primarily infected individual [15]. The latent and active 
basic reproduction numbers of the COVID-19 SLAIIR model was 
calculated using the Next Generation Matrix method (NGM) given 
by [16] as follows:

From ( ) ( )( )4 a f− , we perform the following operations:

a.	 Regroup the equations in the model into disease and non-
disease classes.

b.	 Express disease class dynamics as ( ) ( )dx f x v x
dt

= − ,

where f  includes new infections and v  includes transitions 
and removals.

c.	 Construct matrices F  and V  by partial derivatives of f  
and v  w.r.t. infected compartments at the disease- free equilibrium 
( , , ,

CC C LL A I and 
CAI  respectively).

d.	 Calculate the next generation matrix 1K FV −= .

e.	 Obtain the eigenvalues of 1K FV −= .

f.	 0R  is the largest spectral radius of ( ),K Kρ .

Finally, we examine the local stability near the disease-free 
equilibrium, to help us determine if small outbreaks die out or 
grow. We perform the local stability analysis of equilibrium points, 
as described by [13]. To achieve this, we use the linearization 
approach, given in [13], and perform the following operations;

a.	 Identify equilibrium points.

b.	 Linearize the system at the equilibrium point.

c.	 Compute the Jacobian matrix.

d.	 Evaluate eigenvalues: stability requires all eigenvalues to 
have negative real parts.

Model Formulation

The SLAIIR mathematical model for the COVID-19 transmission 
dynamics is formulated by dividing the population into six classes, 
namely:

a.	 ( )S t : Susceptible individuals who are at risk of 
contracting COVID-19, they have not yet been infected and do not 
have immunity to the disease;

b.	 ( )CL t : The latent COVID-19 infected individuals who just 
contracted (got infected with) COVID-19, they represent individuals 
in the incubation period who are asymptomatic;

c.	 ( )CA t : The active COVID-19 infected individuals who have 
full blown COVID-19, they are symptomatic;

d.	 ( )
CLI t : Individuals infectious with latent COVID-19, who 

have compromised immune system, are pre- symptomatic and can 
transmit COVID-19;
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e.	 ( )
CAI t : Individuals infectious with active COVID-19, they 

are experiencing symptoms of COVID-19, have high viral load, 
making them a potential source of infection for others particularly 
in close contact settings;

f.	 ( )R t : Individuals recovered from both latent and active 
stages of COVID-19.

 These classes represent various stages of COVID-19 infection, 
enabling the modeling of the disease spread. With these, the total 
population, ( )N t , is the sum of ( )a f−  at time, t , given by:

( ) ( ) ( ) ( ) ( ) ( ) ( )
C CC C L AN t S t L t A t I t I t R t= + + + + +

 (1)

Model Assumptions

For our proposed SLAIIR model, the following assumptions are 
made:

a.	 The susceptible class increases by the recruitment of 
people at a rate, Λ .

b.	 All individuals are subject to natural death, at rate, µ .

c.	 The transmission of disease occurs when susceptible 
individuals come in contact with infected individuals, be it latent 
COVID-19 or active COVID-19, by a force of infection, (the incidence 

is of bilinear mass action). The forces of infections are given as:

( ) ( )1C CL C LL t I tλ β= +
 (2)

( ) ( )2C CA C AA t I tλ β= +
 (3)

where,

•	  1 CLβ  is the effective contact rate for latent COVID-19; and

•	  2 CAβ  is the effective contact rate for active COVID-19.

d.	 Individuals from the COVID-19 latent class, CL , become 
infectious ( )CLI  at a rate, v , or recover from latent COVID-19 at 
a recovery rate, ϕ .

e.	 Individuals from the active COVID-19 class, CA , become 
infectious ( )CAI  at a rate,  , or recover from active COVID-19 at a 
recovery rate, π .

f.	 Infectious latent COVID-19, CLI
 and infectious active 

COVID-19, 
CAI , may recover at rates, ψ  and γ , respectively, or 

die due to COVID-19 disease-induced death rates of 
CLδ  and 

CAδ
, respectively.

The schematic diagram of the proposed (SLAIIR) model is 
illustrated in Figure 1. Thus, the governing mathematical model can 
be framed into the following system of equations:

Figure 1: The Schematic Diagram of the Proposed SLAIIR Model.

( )C CL A
dS S
dt

λ λ µ= Λ − + +
 (4a)

( )
C

C
L C

dL S v L
dt

λ ϕ µ= − + +
 (4b)

( )
C

C
A C

dA S A
dt

λ π µ= − + +
 (4c)

( )C

C C

L
C L L

dI
vL I

dt
ψ µ δ= − + +

 (4d)
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( )C

C C

A
C A A

dI
A I

dt
γ µ δ= − + +

 (4e)

C CC C L A
dR L A I I R
dt

ϕ π ψ γ µ= + + + −
 (4f)

where,

CLλ  and 
CAλ  are as given in (2) and (3), respectively; and with 

initial conditions,
( ) ( ) ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0, 0 0, 0 0.

C CC C L AS L A I I R≥ ≥ ≥ ≥ ≥ ≥  (5)

The descriptions of model parameters are presented in Table 1.

Table 1: The Description of the Proposed SLAIIR Model Parameters.

Parameter	 Biological Description

Λ Rate of recruitment to the population

1β Latent COVID-19 transmission rate

2β Active COVID-19 transmission rate

CLλ Force of infection for latent COVID-19

CAλ Force of infection for active COVID-19

µ Natural death rate of the individuals

v Rate at which individuals leave the CL  class for the 
CLI  class

 Rate at which individuals leave the CA  class for the 
CLI  class

ϕ Recovery rate of latent COVID-19 individuals

π Recovery rate of active COVID-19 individuals

ψ Recovery rate of ILC individuals

γ Recovery rate of IAC individuals

CLδ Latent COVID-19 induced death rate

CAδ Active COVID-19 induced death rate

Model Analysis

Positivity and Boundedness of Solutions

This theorem ensures the model’s solutions are biologically 
realistic and acceptable to human populations, being both positive 
and bounded within a feasible range.

Theorem 3.1. All solutions of the SLAIIR model are positive and 
bounded in the region;

( ) ( )6, , , , , : 0
C CC C L AS L A I I R R N t

µ+

 Λ
Ω = ∈ ≤ ≤ 

 

Proof. For a positive set Ω , and non-negative initial conditions 
(as given in (5)), each vector eld is demonstrated to remain non 
negative. Thus

0

0
S

dS
dt =

= Λ ≥
 (6a)

0

0
c

c

c
L

L

dL S
dt

λ
=

= ≥
 (6b)

0

0
c

c

c
A

A

dA S
dt

λ
=

= ≥
 (6c)

0

0C

LC

L
C

I

dI
vL

dt
=

= ≥

 (6d)
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0

0C

AC

A
C

I

dI
A

dt
=

= ≥

 (6e)

0

0.
C CC C L A

R

dR L A I I
dt

ϕ π ψ γ
=

= + + + ≥
 (6f)

 The change in total population, given as: 
( )

C CC C L AN t S L A I I R= + + + + + , at time, t , is governed by;

C CL AC C
dI dIdL dAdN dS dR

dt dt dt dt dt dt dt
= + + + + +

 (7)

Substituting each component of ( ) ( )( )6 a f−  into (7); and 
cancelling out, gives;

.dN N
dt

µ≤ Λ −
 (8a)

Equation (8a) can be re-written for convenience as;

.dN N
dt

µ+ ≤ Λ
 (8b)

Solving (8b) using the integration factor, we have:

( )( ) .t td N t e e
dt

µ µ+ ≤ Λ
 (9)

 Integrating both sides gives;

( ) .t tN t e e kµ µ

µ
Λ

≤ +
 (10)

and then dividing both sides by 
teµ

 gives;

( ) .tN t ke µ

µ
−Λ

≤ +
 (11)

With the given the initial condition, ( )0 0N≤ , as 0t → ,

( )0 .N t
µ
Λ

≤ ≤

Hence, the proof con rms that the solution of the SLAIIR model 
remains non-negative and bounded; ensuring biological meaningful 
results.

The Disease-Free Equilibrium Points (DFE)

Setting the disease states 0
C CC C L AL A I I= = = =  in 

( ) ( )( )4 a f− , yields the disease-free equilibrium points, we have 
for ( ) ( )1 2: 0 0 0 0 0CL S S Sβ β µΛ − + − + − = . Performing the same 
operations for CA , 

CLI  and 
CAI ,

 we obtain the disease-free equilibrium points as:

0 ,0,0,0,0,0 .CE
µ

 Λ
=  
   (12)

The Basic Reproduction Number

From ( ) ( )( )4 a f− , we have:

( )
( )

1

2 ,
0
0

C

C

C L

C A

L I S

A I Sf

β

β

 +
 
 +=  
 
 
   (13)

( )
( )
( )
( )

.
C C

C C

C

C

C L L

C A A

v L
A

v vL I

A I

ϕ µ
π µ

ψ µ σ

γ µ σ

 + + 
 + + 

=  − + + + 
 − + + + 




 (14)

We obtain Jacobian matrices F  and V  by partial derivatives of 
f  and v  w.r.t. ( ), , ,

C CC C L AL A I and I  respectively, noting that for 
( )1 CC LL I Sβ + ,

1

C S

dS
dL

µ

β
µΛ

=

Λ
=

 (15)

2

C S

dS
dA

µ

β
µΛ

=

Λ
=

 (16)

Performing the same operations for other entries in f  and v
, we obtain;

( )

1 1

2 2
0

0 0

0 0 ,

0 0 0 0
0 0 0 0

CF DF E

β β
µ µ

β β
µ µ

Λ Λ 
 
 

Λ Λ 
= =  

 
 
 
   (17)

( )0

0 0 0
0 0 0

0 0

0 0
C

C

C

L

A

v

V DV E v

ϕ µ
π µ

ψ µ σ

γ µ σ

+ + 
 + + = =  − + +
 

− + +  




 (18)

After performing necessary matrix operations, the inverse of 
(18) is obtained as,
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( )

( )

( )( ) ( )

( )( ) ( )

1

1 0 0 0

10 0 0

10 0

10 0

C C

C C

L L

A A

v

V v
v

ϕ µ

π µ

ϕ µ ψ µ σ ψ µ σ

π µ γ µ σ γ µ σ

−

 
 + + 
 
 + + 

=  
 

+ + + + + + 
 
 −
 + + + + + + 






 (19)

And the next generation matrix, 1FV − , as:

( ) ( ) ( )

( ) ( ) ( )

1 1

1
2 2

11 0 0

0 1 0

0 0 0 0
0 0 0 0

C C

C C

L L

A A

v

FV

β β
µ ϕ µ ψ µ σ µ ψ µ σ

β β
µ π µ γ µ σ µ γ µ σ

−

  Λ Λ  +
 + + + + + +  

  Λ Λ=   +
  + + + + + +  
 
 
 





 (20)

The eigenvalues ( )λ  of 1FV −  are:

( )
1

1 1 ,
CL

v
v
βλ

µ ϕ µ ψ µ σ

 Λ
= +  + + + + 

( )
2

2 1
CA

βλ
µ π µ γ µ σ

 Λ
= +  + + + + 





and 3 4λ λ=  with multiplicity 0 .

This follows that the basic reproduction numbers for the latent and active COVID-19 SLAIIR model are:

( )
( )

( )( )
11

0 1 CC

C C

LL

L L

vvR
v v

β ψ µ σβ
µ ϕ µ ψ µ σ µ ϕ µ ψ µ σ

Λ + + + Λ
= + =  + + + + + + + +   (21)

and

( )
( )

( )( )
22

0 1 CC

C C

AA

A A

R
β γ µ σβ

µ π µ γ µ σ µ π µ γ µ σ

Λ + + + Λ
= + =  + + + + + + + + 



 
 (22)

 The overall basic reproduction number for the COVID-19 
SLAIIR model is,

{ }0 0 0max , .C CL ACR R R=
 (23)

These results show that:

0
CR  depends on two distinct transmission pathways, 

represented by 1β  and 2β .

0
CLR relates to the progression from latent COVID-19 to the 

infectious latent COVID-19 compartment, denoted by v .

0
CAR relates to the progression from active COVID-19 to the 

infectious active COVID-19 compartment, denoted by  .

The Local Stability Analysis

The Local Stability of steady state solutions is examined using 
linearization approach. The COVID-19 SLAIIR

model’s Jacobean matrix is assessed for stability evaluation at 
0
CE  is:
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( )

( )

( )

( )
( )

1 2 1 2

1 1

0 2 2

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

C

C

C

L

A

v

J E

v

µ β β β β
µ µ µ µ

β ϕ µ β
µ µ

β π µ β
µ µ

ψ µ σ

γ µ σ

ϕ π ψ γ µ

Λ Λ Λ Λ − − − − − 
 

Λ Λ − + + 
 

Λ Λ = − + + 
 
 − + +
 
 − + +
 
 − 





 (24)

The eigenvalues are µ−  of multiplicity 2. The other four are obtained from the reduced matrix;

( )

( )

( )

( )
( )

1 1

2 2
1 0

0 0

0 0

0 0

0 0
C

C

C

L

A

v

J E

v

β ϕ µ β
µ µ

β π µ β
µ µ

ψ µ σ

γ µ σ

Λ Λ − + + 
 

Λ Λ − + + =
 
 − + +
 
 − + + 




 (25)

From the 4 4×  sub matrix (25), the disease specific 
compartments can be obtained, that is, sub matrices corresponding 
to the latent and active stages of COVID-19.

The Submatrix corresponding to the latent COVID-19 is:

( )
( )

( )
1 1

0
C

C

C

L
L

L

v
J E

v

β ϕ µ β
µ µ

ψ µ σ

Λ Λ − + + 
=  
 − + +   (26)

with

( ) ( ) ( )1C CL Ltr J vβ ϕ µ ψ µ σ
µ
Λ

= − + + − + +
 (27)

and

( ) ( ) ( )1 1det
C CL LJ v vβ ϕ µ ψ µ σ β

µ µ
 Λ Λ

= − − + + + + − 
   

(28)

Eigenvalues for the sub-matrix are

( )3 1 vλ β ϕ µ
µ
Λ

= − + +
 (29) 

( )4 CLλ ψ µ σ= − + +
 (30)

According to the method of analysis of local stability, the trace 
is negative if

( )1 2 ,
CLvβ ϕ ψ µ σ

µ
Λ
< + + + +

and the determinant is positive if

( )
( )( )

1 1C

C

L

L

v

v

β ψ µ σ

µ ϕ µ ψ µ σ

Λ + + +
<

+ + + +

Hence, the DFE point, 0
CE , of the latent COVID-19 is

(a)	 Stable if 0 1CLR <

(b)	 Unstable if 0 1CLR >

Also, the sub-matrix corresponding to the active COVID-19 is	
 	  

( )
( )

( )
2 2

0
C

C

C

A
A

A

J E
β π µ β

µ µ

γ µ σ

Λ Λ − + + 
=  
 − + + 




 (31)

with

( ) ( ) ( )2C CA Atr J β π µ γ µ σ
µ
Λ

= − + + − + +
 (32)

and
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( ) ( ) ( )2 2det .
C CA AJ β π µ γ µ σ β

µ µ
 Λ Λ

= − − + + + + − 
 

 
 (33)

The trace is negative if

( )2 2
CAβ π µ γ σ

µ
Λ
< + + + +

and the determinant is positive if

( )
( )( )

2 1C

C

A

A

β γ µ σ

µ π µ γ µ σ

Λ + + +
<

+ + + +





So, the DFE point, 0
CE , of the active COVID-19 is

(a)	 Stable if 0 1CAR < , and

(b)	 Unstable if 0 1CAR > .

Result Discussion

The global spread of COVID-19, caused by SARS-CoV-2, has led 
to substantial health and economic impacts. The pandemic, which 
can be asymptomatic (latent) or symptomatic, has rapidly spread 
to over 200 countries, continuing to inflict severe public health 
and socio-economic burden in many parts of the world. The SLAIIR 
compartmental epidemic model developed in this study, addresses 
the asymptomatic stage of the disease, among other stages. 
The positivity and boundedness of solutions showed that the 
solutions of the model remain positive for all time, indicating that 
the compartments are non-negative. The solutions are bounded, 
indicating that the total population is finite. These conditions imply 
that the epidemic will eventually die out. The DFE represents a state 
where the disease has been eradicated from the population. The 
DFE point shows that the susceptible compartment is at a steady 
state, indicating a constant population with no infection. All infected 
compartments are zero, indicating no infections in the population 
at the DFE. For our proposed SLAIIR model, our R0 is influenced 
by two distinct transmission pathways, indicating that COVID-19 
can spread through multiple routes, (e.g., direct contact, airborne 
transmission, etc.). It suggests heterogeneity in transmission, where 
different routes contribute differently to the overall transmission 
dynamics. The local stability shows mixed stability, where the non-
zero eigenvalues determine stability in some directions, while the 
zero eigenvalues indicate neutral stability in other directions. The 
results imply that the disease exhibits slow but impacting dynamics 
during latency, contrasting with faster dynamics during infection 
recovery.

Conclusion

This study introduces a new SLAIIR mathematical model to 
capture COVID-19 transmission dynamics, en- compassing latent 
and active phases. The model’s solutions are proven to be positive 
and bounded, ensuring a realistic depiction of disease spread. Also, 

equilibrium points were estimated and analyzed for stability in 
relation to the basic reproduction numbers of the latent and active 
stages of the disease. In both stages of the disease, we proved 
that the basic reproduction numbers depend on two distinct 
transmission pathways. The results of this analytical approach 
reveals that the disease-free equilibria are locally stable if 0 1R <
, and unstable otherwise. This critical examination of the proposed 
SLAIIR mathematical model of the COVID-19 epidemic dynamics 
with latent and active stages sheds light on the role played by the 
latent stage of COVID-19 disease in the transmission dynamics of 
the disease.
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