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Abstract

In this paper, an analytical framework of the mathematical model for assessing the epidemic dynamics of the latent and active stages of

COVID-19 disease is proposed. The population group was divided into six categories. The biological feasibility of the developed mathematical model

was studied by verifying the properties such as the existence, boundedness and the non-negativity of the solutions. The analytical behaviour of the

disease-free equilibrium point, the basic reproduction numbers, and the local stability analysis for the latent and active stages of COVID-19 were

studied using the linearization approach. The results show that the solutions of the system outcomes are positive and finite within the region, with

the disease-free equilibrium point, the population size is stable. The basic reproduction number depends on two distinct transmission pathways:
the latent and the active COVID-19 effective contact rates, suggesting that the COVID-19 latent (asymptomatic) stage contributes in the disease
transmission patterns. This study demonstrates the importance of considering the latent stage of a disease in the modelling of a disease dynamics

and its implications for epidemiological studies.
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Introduction

The COVID-19 pandemic started in Wuhan, China, in December
2019 [1]. This disease, caused by Severe Acute Respiratory
Syndrome Corona Virus 2 (SARS-CoV-2), recorded in its first week
of pandemic, asymptomatic cases of barely 1%. Among infected
people, 81% had mild symptoms, 14% were severe, and 5% were
critical [2]. Since its emergence, COVID-19 has spread globally,
infecting over 676 million people, resulting in 6.8 million deaths,
and promoting the administration of 13.3 billion vaccine doses, with
economic losses amounting to trillions of USD [3,4]. The epidemic
dynamics of COVID-19 are characterized by presymptomatic
transmission events, suggesting a shorter latent period compared

@ @ This work is licensed under Creative Commons Attribution 4.0 License | ABBA.MS.ID.000654.

to the incubation period [5]. The latent period is typically estimated
as the time between infection and detectable virus in a respiratory
specimen. Common symptoms of SARS-CoV-2 infection include
fever, cough, and fatigue, with some individuals experiencing
stuffy or runny nose and diarrhoea. Severe cases can lead to acute
respiratory distress syndrome, septic shock, and death [6]. As a
highly contagious infectious disease, its sources of infection include
both confirmed cases and also asymptomatic carriers [6,7].

Asymptomatic patients of SARS-CoV-2 infection are often
without clinical symptoms, but test positive for the viral nucleic acid
test. Most asymptomatic patients are found during the screening
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of close contacts. Because the laboratory tests are performed at
an early stage, these asymptomatic cases go on to develop illness
after screening. According to [8], the most common symptoms of
COVID-19 include fever, cough, and fatigue, while Symptoms of
severe COVID-19 disease are high temperature, loss of appetite,
shortness of breath, persistent pain in the chest, etc. People of all
ages who experience any of the aforementioned symptoms should
seek medical care immediately, as some people may experience
severe illness, which can lead to hospitalization and death. The
primary mode of transmission of COVID-19 is through respiratory
droplets generated during talking, coughing or sneezing by an
infected person, which can land on surfaces or directly on another
person’s mouth, nose, or eyes, facilitating infection.

Therefore, it is important to maintain physical distance,
wear masks, and practice good hand hygiene to reduce the risk
of transmission. Various models have been developed to explain
COVID-19 dynamics, simulating strategies to mitigate the outbreak
and reduce the peak in daily cases, hospital admissions, and
fatalities. [9] described modelling COVID-19 spread in Germany,
its assessment, and possible scenarios. They simulated different
strategies for the mitigation of the current outbreak, to help in
slowing down the spread of the virus and reducing the peak in
daily diagnosed cases. Their results showed that a partial and
gradual lifting of introduced control measures could be possible if
accompanied by further increased testing activity, strict isolation
of detected cases, and reduced contact with risk groups. [10]
developed mathematical modelling of COVID-19 dynamics in
Ukraine.

Their model included age-stratified disease parameters,
as well as age-specific and location-specific contact matrices,
to represent contacts. Their result showed that the model can
provide an accurate short-term forecast for the numbers and age
distribution of cases, and deaths. Mathematical models are crucial
for understanding transmission dynamics of infectious diseases
and evaluating intervention strategies, with studies employing
compartmental models like SEIR, SIQR, and other extensions
[11,12]. However, many models overlook the latent COVID-19 stage
and the asymptomatic case diagnosis. This study addresses this gap
by incorporating the COVID-19 latent stage and clinical diagnosis
of asymptomatic individuals, investigating transmission dynamics
using specific epidemiological classes to estimate key metrics,
by proposing and studying the COVID-19 Susceptible, Latent,
Active, Infectious latent, Infectious active and Recovered (SLAIIR)
mathematical modeling. The paper is structured as follows: Section
1introduces latent and active COVID-19 disease, Section 2 discusses
methodology, Section 3 presents model analysis, Section 4 covers
results, and Section 5 concludes the work.

Methodology

This section discusses the methods used in the COVID-19 SLAIIR
model’s mathematical modeling. The model’s solutions include
positivity and boundedness, as proposed in [13], which proves that
the system’s solutions are positive and bounded. The integration
factor method from [14] transforms the differential equations into
an easily integrable form, ensuring biological meaningful results.
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The Disease-Free Equilibrium (DFE) point, is found by solving the
right-hand side of the system of (4(a)—(f)) to zero, representing
a population state where COVID-19 is no longer present. This is
typically characterized by zero infected individuals. The basic
reproduction number, R, is a key parameter in epidemiological
models, de ned as the number of secondary infections from a
single primarily infected individual [15]. The latent and active
basic reproduction numbers of the COVID-19 SLAIIR model was
calculated using the Next Generation Matrix method (NGM) given
by [16] as follows:

From (4(a) —(f)), we perform the following operations:

a.  Regroup the equations in the model into disease and non-
disease classes.

b.  Express disease class dynamics as ? =f(x)-v(x),
t

where £ includes new infections and V includes transitions
and removals.

c.  Construct matrices F' and ' by partial derivatives of f
and Y wirt. infected compartments at the disease- free equilibrium
(L, A1, s and ]AC respectively).

d.  Calculate the next generation matrix K = FV".
e.  Obtain the eigenvalues of K = FV™'.
f. R, is the largest spectral radius of K, p(K).

Finally, we examine the local stability near the disease-free
equilibrium, to help us determine if small outbreaks die out or
grow. We perform the local stability analysis of equilibrium points,
as described by [13]. To achieve this, we use the linearization
approach, given in [13], and perform the following operations;

a.  Identify equilibrium points.
b.  Linearize the system at the equilibrium point.
c.  Compute the Jacobian matrix.

d.  Evaluate eigenvalues: stability requires all eigenvalues to
have negative real parts.

Model Formulation

The SLAIIR mathematical model for the COVID-19 transmission
dynamics is formulated by dividing the population into six classes,
namely:

a.  S(r): Susceptible individuals who are at risk of
contracting COVID-19, they have not yet been infected and do not

have immunity to the disease;

b.  L(t): The latent COVID-19 infected individuals who just
contracted (got infected with) COVID-19, they represent individuals
in the incubation period who are asymptomatic;

c.  A.(t): Theactive COVID-19 infected individuals who have
full blown COVID-19, they are symptomatic;

d. 1, (¢): Individuals infectious with latent COVID-19, who
have compromised immune system, are pre- symptomatic and can
transmit COVID-19;
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e. I, (¢): Individuals infectious with active COVID-19, they
are experiencing symptoms of COVID-19, have high viral load,
making them a potential source of infection for others particularly
in close contact settings;

f. R(1): Individuals recovered from both latent and active
stages of COVID-19.

These classes represent various stages of COVID-19 infection,
enabling the modeling of the disease spread. With these, the total
population, N(t). is the sum of (a —f) attime, 7, given by:

N(t)=S(t)+Le(t)+ A () + 1, (t)+1, (t)+R(z) 0
Model Assumptions

For our proposed SLAIIR model, the following assumptions are
made:

a.  The susceptible class increases by the recruitment of
people at a rate, A.

b.  Allindividuals are subject to natural death, at rate, 4.

c.  The transmission of disease occurs when susceptible
individuals come in contact with infected individuals, be it latent
COVID-19 or active COVID-19, by a force of infection, (the incidence

is of bilinear mass action). The forces of infections are given as:

ho = BL() 41, (1)

Ay =PoAc(2)+1, (1) G

where,
D B,L. is the effective contact rate for latent COVID-19; and
. B, A, is the effective contact rate for active COVID-19.

d. Individuals from the COVID-19 latent class, L. become
infectious (ILC) at a rate, V, or recover from latent COVID-19 at

arecovery rate, ¢ .

e. Individuals from the active COVID-19 class, 4., become
infectious (IAC) at a rate, ¢ , or recover from active COVID-19 at a
recovery rate, 77 .

f. Infectious latent COVID-19, ~ ¢ and infectious active
COVID-19, [Ac , may recover at rates, i/ and }, respectively, or
die due to COVID-19 disease-induced death rates of 5Lc and 5Ac

, respectively.

The schematic diagram of the proposed (SLAIIR) model is
illustrated in Figure 1. Thus, the governing mathematical model can
be framed into the following system of equations:

Figure 1: The Schematic Diagram of the Proposed SLAIIR Model.

ds

—=A-(4, +4, +ul)S

dt ( fe " e ) (4a)
dLc =/1LCS—(V+(p+,u)LC

dt (4b)

dA.

—==A4,5-L+r+u)A

dt Ac ( ) C (4‘:)
dl

Lo =vLC—(l//+,u+§LC)1LC

dt (4d)
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where,
d[Ac _ fAC 3 (7 st 5 )IA N -lLC anq ./IAC are as given in (2) and (3), respectively; and with
dt Ac c (4¢) initial conditions,
IR 5(0)=0, L.(0)=0, 4.(0)=0, I, (0)=0, 1, (0)=0, R(0)=0. 5)
—=¢L.+7A.+yl, +yl, —uR . .
dt c c (4f) The descriptions of model parameters are presented in Table 1.

Table 1: The Description of the Proposed SLAIIR Model Parameters.

Parameter Biological Description
A Rate of recruitment to the population
/31 Latent COVID-19 transmission rate
,32 Active COVID-19 transmission rate
ﬂ’Lc Force of infection for latent COVID-19
A Force of infection for active COVID-19
4

C

Natural death rate of the individuals

v Rate at which individuals leave the L. class for the ILC class
l Rate at which individuals leave the 4. class for the [ I class
] Recovery rate of latent COVID-19 individuals
T Recovery rate of active COVID-19 individuals
v Recovery rate of ILC individuals
V4 Recovery rate of IAC individuals
5Lc Latent COVID-19 induced death rate
o A Active COVID-19 induced death rate
Model Analysis ds
—| =A20
Positivity and Boundedness of Solutions dt |s_, (6a)
= a
This theorem ensures the model’s solutions are biologically
realistic and acceptable to human populations, being both positive dL
and bounded within a feasible range. —Zc = lL S>0
dt ‘
Theorem 3.1. All solutions of the SLAIIR model are positive and L,=0 (6b)
bounded in the region;
A
- 6. dA
Q={(8,LesAcrd, 1, R)€R:0<N(1)<—= l —4,820
H |, ., *
¢ (6c)
Proof. For a positive set Q , and non-negative initial conditions
(as given in (5)), each vector eld is demonstrated to remain non d]L
negative. Thus p = VLC >0
t
I1.=0 (6d)
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dl,
— =lA4.20
ar |, _,
o (6€)
dR
Z =oL.+mA.+yl, _+yl, 20.
R=0 (ef)
The change in total population, given as:

N(t)=S+L.+A.+1, +1, +R,attime, {,is governed by;

dN _ds dL,  d4. dl, dlL, dR

At di o di dt die di o di o

Substituting each component of (6(a)—(f)) into (7); and
cancelling out, gives;
dN
—<A-uN.

Equation (8a) can be re-written for convenience as;

N +uN <A

Solving (8b) using the integration factor, we have:

d
—+ (N(t)e’”) < Ae.
dt 9)
Integrating both sides gives;
A
N(t)e" <—e" +k.
H (10)

ut
and then dividing both sides by e

N(1) <X ke,

gives;

# (D
With the given the initial condition, 0< N (0),as t >0,
0<N(1)< A
7

Hence, the proof con rms that the solution of the SLAIIR model
remains non-negative and bounded; ensuring biological meaningful
results.

The Disease-Free Equilibrium Points (DFE)

Setting the disease states L.=4.=[, =1, =0 in
(4(a)=(f)), yields the disease-free equilibrium points, we have
for L.:A-pB(0+0)S-p5,(040)S-—uS=0. Performing the same
operations for 4., 1, and I, ,

we obtain the disease-free equilibrium points as:

ES =[§,o,o,o,0,o}
# (12)

The Basic Reproduction Number

From (4(a)—(f)), we have:

B(Le+1,,)S

_| Bl Ao+, )S |
0
0

(13)

(v+o+u)L,
(l+7+p)A.

| —vL, +(‘/’+ﬂ+O'LC)ILC

—lA,. +(;/+,u+0'AC)IAC (1)

We obtain Jacobian matrices F' and V' by partial derivatives of
S and V wirt. (LC7AC’1L(;’ and IAC) respectively, noting that for
Bi(Le+1,.)S

’

as|  BA
dLC S=A H
: (15)
as| _pA
dAC SZA ,U
“ (16)
Performing the same operations for other entries in / and V
, we obtain;
BA o BA
u u
A A
F=DF(EJ)=| 0 BA g BAY
u u
0 0 0 0
0 0 0 0 (17)
v+o+u 0 0 0
. 0 (+m+pu 0 0
VZDV(EO)= -y 0 YHpt+o, 0
0 -/ 0 ytu+o,

(18)

After performing necessary matrix operations, the inverse of
(18) is obtained as,
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1
0 0 0
(v+o+u)
1
0 0 0
(f+7z+,u)
yl=
% 1
0 0
(v+(p+,u)(l//+,u+alc) (‘/’+”+0Lc)
0 ! 0 - !
i (€+7z'+,u)(7+y+0'AC) (}/+,u+crAC)_ (19)
And the next generation matrix, Fy ', as:
o 1 ! 0 AA 0 |
,u(v+qa+,u)[ +(|//+,u+O'LC)] H(V/+H+O'LC)
Fr'= 0 BA 1 ¢ 0 BA
u(l+7m+p) +(y+u+%) u(y+u+a,)
0 0 0 0
i 0 0 0 0 I 20)
The eigenvalues (1) of FV™" are:
= A 1+ d ,
p(vro+u)\ wtpto,
A
A= P 1+ !
u(l+r+u)\  y+pto,

and A, = A, with multiplicity O .

This follows that the basic reproduction numbers for the latent

and active COVID-19 SLAIIR model are:

Rl — BA 1+ v 3 'BIA(V/+ﬂ+GLC+V)
Lo vrro ) p(reru)yruto,) o
and
Rl = £A 1+ ¢ 'BZA(7+”+GAC+€)
p(t+z+p) yruto, ) wp(z+l+u)(y+u+o, ) (22)

The overall basic reproduction number for the COVID-19
SLAIIR model is,

R

c _ Le
R; =max {ROC R,

}' (23)
These results show that:

Ry depends on two distinct transmission pathways,
represented by B and B,.

Ry relates to the progression from latent COVID-19 to the
infectious latent COVID-19 compartment, denoted by V.

R relates to the progression from active COVID-19 to the
infectious active COVID-19 compartment, denoted by £ .

The Local Stability Analysis

The Local Stability of steady state solutions is examined using
linearization approach. The COVID-19 SLAIIR

model’s Jacobean matrix is assessed for stability evaluation at
E{ is:
o is:
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A A
—H -B— —$—
u
0 B——(v+o+u) 0
c A
J(ES)=| 0 0 B =—(t+m+u)
0 % 0
0 0 !
| 0 1] V4

The eigenvalues are —u of multiplicity 2. The other four are obtained

A
ﬁlﬂ (v+o+u)

A
J](E()C): 0 ,32;—([+7Z'+/1
v 0
0 L

From the 4x4 sub matrix (25), the disease specific
compartments can be obtained, that is, sub matrices corresponding
to the latent and active stages of COVID-19.

The Submatrix corresponding to the latent COVID-19 is:

A A

JLC(EOLC)= ,31;—(\/+(p+,u) 131;
v —(gz/+/1+o-LC) o6
with
tr(JLC)=ﬂlﬁ—(v+go+,u)—(l//+,u+olc)

# (27)
and
det(JLC)=—[ﬂ1%—(v+(o+,u)}(y/+,u+olc)—vﬁI%

(28)
Eigenvalues for the sub-matrix are

A
A :131__("+(P+ﬂ)
H (29)

Ay =—(l//+,u+0'LC) G0

According to the method of analysis of local stability, the trace
is negative if

A A
_ﬂl_ _ﬁz_ 0
B 0 0
0 /)’2A 0
7,
—(l//+;t+0'LC) 0 0
0 —(7+,u+0'AE) 0
4 Ve —H ] (24)
from the reduced matrix;
A _
,Bl_ 0
U
A
) 0 132_
7]
—(l//-i-,u+0'LC) 0
0 —\y+u+o

A
ﬂ1—<(v+go+¢//+2y+aLc),
Y7
and the determinant is positive if

,BlA(l//+y+O'LC +v)

<1
u(vo+u)y+uto,)

Hence, the DFE point, EOC , of the latent COVID-19 is
(a) Stableif R <1
(b) Unstable if Ry >1

Also, the sub-matrix corresponding to the active COVID-19 is

A A

2 (v kel
1, (EX)- ﬁzﬂ (+7m+p) ﬁzﬂ

b4 —(7+,u+O'AC) 651

with

A
tr(JAC)=ﬂ2——(€+ﬂ+,u)—(}/+,u+0'AC)

# (32)

and
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det(JAc)z—{ﬁZ%—(£+ﬁ+y)}(y+y+a%)—ZﬂZ%. )

The trace is negative if

A
ﬁ2—<(£+7r+2,u+y+0'AC)

Y7

and the determinant is positive if

ﬂzA(7+ﬂ+O'AC +f)

<1
,u(f+7r+,u)(;/+,u+0'AC)

So, the DFE point, E{ , of the active COVID-19 is
(a) Stableif R <1,and
(b) Unstableif R >1.

Result Discussion

The global spread of COVID-19, caused by SARS-CoV-2, has led
to substantial health and economic impacts. The pandemic, which
can be asymptomatic (latent) or symptomatic, has rapidly spread
to over 200 countries, continuing to inflict severe public health
and socio-economic burden in many parts of the world. The SLAIIR
compartmental epidemic model developed in this study, addresses
the asymptomatic stage of the disease, among other stages.
The positivity and boundedness of solutions showed that the
solutions of the model remain positive for all time, indicating that
the compartments are non-negative. The solutions are bounded,
indicating that the total population is finite. These conditions imply
that the epidemic will eventually die out. The DFE represents a state
where the disease has been eradicated from the population. The
DFE point shows that the susceptible compartment is at a steady
state, indicating a constant population with no infection. All infected
compartments are zero, indicating no infections in the population
at the DFE. For our proposed SLAIIR model, our RO is influenced
by two distinct transmission pathways, indicating that COVID-19
can spread through multiple routes, (e.g., direct contact, airborne
transmission, etc.). It suggests heterogeneity in transmission, where
different routes contribute differently to the overall transmission
dynamics. The local stability shows mixed stability, where the non-
zero eigenvalues determine stability in some directions, while the
zero eigenvalues indicate neutral stability in other directions. The
results imply that the disease exhibits slow but impacting dynamics
during latency, contrasting with faster dynamics during infection
recovery.

Conclusion

This study introduces a new SLAIIR mathematical model to
capture COVID-19 transmission dynamics, en- compassing latent
and active phases. The model’s solutions are proven to be positive
and bounded, ensuring a realistic depiction of disease spread. Also,
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equilibrium points were estimated and analyzed for stability in
relation to the basic reproduction numbers of the latent and active
stages of the disease. In both stages of the disease, we proved
that the basic reproduction numbers depend on two distinct
transmission pathways. The results of this analytical approach
reveals that the disease-free equilibria are locally stable if R0 <1
, and unstable otherwise. This critical examination of the proposed
SLAIIR mathematical model of the COVID-19 epidemic dynamics
with latent and active stages sheds light on the role played by the
latent stage of COVID-19 disease in the transmission dynamics of
the disease.
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