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Abstract
Although contemporary literature focuses on short-term forecast volatility modeling of georeferenceable, [GPS indexable], Land Use Land 

Cover (LULC) and sociodemographic, stratifiable, county level, zip code, sampled estimator determinants, questions remain whether a Generalized 
Autoregressive Conditional Heteroscedastic [GARCH] model can reproduce similar outputs under asymptotical, zero, autocorrelated (geographically 
chaotic), multicollinear (dependency of parameters), behavioral by employing interpolative, oncological-related signatures. This paper considers 
the statistical inference of asymmetric, power-transformed, eGARCH (1,1) models in the presence of violations of regression Gaussian assumptions 
in time when strict stationarity is not met. We establish non-asymptotic temporal normality of the quasi-maximum likelihood estimator [MLE] 
when strict stationarity is not held in an empirical georeferenced dataset of stratified, aggregation/non-aggregation-oriented, [i.e., hot/cold spot], 
oncological-related, time series, dependent estimator determinants sampled in Florida. We establish optimal scalability of varying, georeferenced, 
LULC and sociodemographic signatured time series, sampled capture points, without the intercept.

An eGARCH (1,1) model with a skewed Student’s t distribution is tested for temporal asymptoticalness, latent heteroscedasticity, multicollinearity, 
and zero autocorrelation, incorporating platykurtic and leptokurtic skewed thick tails. GARCH (1,1) results were validated using the post-ARCH test, 
where the chi-square statistic decreased by 352.49. Estimator determinants were incorporated into a spatial Monte Carlo Markov Chain [MCMC], 
semi-parametric, eigen-Bayesian, iterative non-frequentist model to rectify type I and II errors. The model verified if forecasts complied with Tobler’s 
law of geography. Volatility clustering propensities validated capture point scalability, incorporating eigen-orthogonalized Moran’s eigenvectors. The 
model allowed conditional variance to depend on previous error terms. By establishing local non-asymptotic properties in a stationary, interpolated, 
signature, capture point, eigen-Bayesian, Markovian, semi-parametric, non-frequentist, GARCH/ARCH model, we teased out random, non-Gaussian, 
temporal heteroscedasticity and multicollinearity. A social media platform using a real-time, AI-ML interactive mobile iOS app can be heuristically 
optimized to target vulnerable georeferenceable, stratified hot spots non-chaotically.
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Introduction

According to the Leukemia & Lymphoma Society, an estimated 
456,481 people in the United States are living with or in remission 
from leukemia [1]. Advances in both diagnosis and treatment—
such as the use of BCR-ABL tyrosine kinase inhibitors for Chron-
ic Myeloid Leukemia and the identification of disease-associated 
molecular defects in Acute Myeloid Leukemia—have significantly 
improved patient outcomes [2,3]. However, many questions about 
oncological treatment remain unresolved, including models for 
timing and dosage scheduling, as well as methods for preventing 
and treating treatment failure. Regression models are widely used 
in oncology to predict outcomes, assess risk, and understand the 
relationships between various factors and cancer-related events. 
Examples of regression-related models published in the literature 
include those for primary cerebellar lymphoma [4] and testicular 
cancer [5]. Hematopoiesis [6]. In some cases, regression models 
have offered insights into the molecular pathogenesis of some can-
cers [7].

In other literature contributions, regression models have 
helped medical deciion-making; for example, in identifying which 
patients are at sufficiently high risk of recurrence to warrant tox-
ic or expensive treatment [8]. Identification of major sociodemo-
graphic and landscape topographic determinants can facilitate the 
design of further trials, aid in inter-trial comparisons, and guide 
the counseling of individual patients at the county, zip code, and 
household levels. Unfortunately, the results of different oncologi-
cal regression models currently employed in the literature may not 
provide a precise framework for clinicians and other research col-
laborators to study leukemia genesis and treatment strategies. Al-
though regressively modeling temporal, stratified, capture point 
sampled estimator determinants can heuristically optimize diagno-
sis and treatment of oncological processes by interpolating county, 
zip code stratifiable, capture point signatures. The residual output 
from these paradigms has not been checked for violations of regres-
sion assumptions in time.

Violations of time-sensitive regression assumptions [e.g., 
non-Gaussian heteroscedastic error variance] occur when the data 
do not meet the model’s requirements, leading to unreliable results. 
Key assumptions in predictive, time series, regression-related, on-
cological capture point modelling include linearity, independence 
of errors, homoscedasticity (constant variance), and normality of 
errors. Violations can result in inaccurate coefficient estimation, 
[e.g., inability to differentiate Chronic Lymphocytic Leukemia 
(CLL), unreliable hypothesis testing, and poor model predictions 
[e.g., falsely targeted county zip code, aggregation/non-aggregation 
(hot/spots/cold spots) of potential CLL)] which can delay treat-
ment, allowing the disease to progress and become more difficult 
to treat. Furthermore, these regression violations would disallow 
regressively delineating geographic locations [i.e., geolocations of 
potential CLL or other oncological patients] when implementing a 
targeted county-level, prevention social media messaging platform, 
as the prognostications would be mis-specified [i.e., pseudo-R2 
probably estimates of zip code, location regressively forecasted 
would reveal a falsely targeted georeferenced hot spot].

The accuracy of targeted county and zip code-level prevention 
social media messaging platform data transfer in AI-ML, mobile, 
interactive smartphone applications (apps) can vary significantly 
depending on network conditions, server response times, optimi-
zation, and device performance. Currently, selective search engines 
embedded in mobile devices, such as iOS health apps, merge data 
based on engineered low-level features and have an order of magni-
tude of up to 91.3 seconds per information text in a CPU implemen-
tation [9]. Faster Regional Convolutional Neural Network [R-CNN] 
enables end-to-end detector training on shared convolutional fea-
tures and shows compelling accuracy and speed using Gaussian 
non-heteroscedastic, non-multicollinear, regressed time series, 
county, zip code stratified, non-zero autocorrelated, georeferenced 
estimator determinants [10]. Real-time R-CNN integration works 
almost instantly, in contrast to typical batch processing, which col-
lects and processes data in predetermined chunks. This implies that 
intelligent, real-time retrieved smartphone health data can be gath-
ered, retrieved, shared, and preserved in milliseconds, enabling the 
prompt diagnosis and rehabilitation of oncological processes.

Currently, mobile oncological-related health apps can only em-
ploy fixed regression non-time series forecast models for various 
applications due to the non-availability of real-time oncological-as-
sociated regressable data. This can lead to misspecifications in 
time. For example, non-inclusion of real-time vital regressed data in 
oncological sampled stratified time series, dependent estimator de-
terminants [e.g., sociodemographic and land use land cover [LULC] 
capture point signatures, etc.] can cause falsely targeted georefer-
enced hot and cold spots of potential leukemia patient households. 
Introduced a Region Proposal Network (RPN) that shares full-im-
age real-time convolutional features within an infused, intelligent, 
AI-ML detection network in an interactive, continuously self-learn-
ing smartphone, mobile app for prediction cost-free region propos-
als [e.g., signature interpolated regression maps for intervention 
protocols]. The interactive app may be usable for implementing so-
cial messaging for oncological patients at the county, zip code level, 
using Gaussian time series regression models.

A method is presented to rectify an empirical georeferenced, 
interpolated, time series, regressed dataset of multicollinear, 
non-Gaussian, heteroscedastic, zero, autocorrelated county, zip 
code level, sampled, oncological-related, stratified estimator de-
terminants within a Markovian semiparametric, eigen-Bayesian 
non-frequentist framework. We intended to heuristically optimize 
temporal signature capture point interpolation of sampled, geo-
referenced, regressed, county-level, zip code, stratifiable oncolog-
ical-related, LULC, and sociodemographic signatures so that they 
would be capable of handling everything a penalized generalized 
linear model [GLM] can handle [e.g., estimator determinant, vari-
ance error-free Gaussian, non-multicollinear distributional flexi-
bility and credibility]. We assumed a subset of signatured, capture 
point, georeferenceable, non-erroneous, non-zero autocorrelated, 
temporal model regression functionalities could be incorporated 
into a semi-parametric, eigen-Bayesian, prognosticative, non-fre-
quentist Markovian, model framework disturbance-free [i.e., 
“non-heteroscedastically”].
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If an empirical sampled, georeferenced, oncological-related re-
gressed dataset of empirical sampled, signature, estimator deter-
minants can be treated for violations of regression assumptions in 
time, the forecasts may be employed to heuristically optimize tar-
geting oncological-related, social media messaging prevention and 
treatment protocols, which may be parsimoniously infusible into 
a real-time, mobile, AI-ML infused iOS app dashboard. This may 
allow robustifying capture point forecast mapping and prioritiz-
ing potential leukemia patients at the household, county, and zip 
code levels. The benefits of homoscedastic, non-asymptotical, time 
series, non-zero autocorrelatable, Gaussian, non-multicollinear, 
oncological-related, regressively forecasted data capture points in 
terms of their accuracy and intuitiveness should include optimal 
predictive power for precision forecast mapping. This would also 
include implementing a Statewide social media leukemia preven-
tion messaging platform.

Presented two space-time model specifications, one based 
upon the generalized linear mixed model (GLMM), and the other 
upon semi-parameterized, Moran, eigenvector, eigen-Bayesian, 
non-frequentist, Markovian, eigen-spatialized filters for testing 
non-asymptoticalness, latent homoscedasticity, Gaussian, zero, 
autocorrelation, and residual non-multicollinearity in an empiri-
cal stratified dataset of georeferenced, sub-county, capture point, 
COVID-19, estimator determinants due to violations of regression 
assumptions in eigenvector geo-space. The authors did so to learn 
more about how regression functions could iteratively geospatial-
ly characterize spilled over, hierarchical diffusion of COVID-19 in 
Uganda at the sub-county district-level. Their objective was to pre-
dictively prioritize an empirically sampled georeferenced dataset 
of hyper-/hypo-endemic, transmission-oriented, capture point ex-
planatory sampled estimator determinants of viral transmission. A 
Moran eigen-Bayesian Markovian semi-parametric, non-frequen-
tist prognosticative model was constructed in GeoPandas, which 
performed an eigenfunction, second-order, eigen-spatial filter 
eigen decomposition of the random effects (REs) in the varying, 
endemic, transmission-oriented, sub-county, sampled estimator 
determinants.

The eigen-model rendered spatially structured random effects 
(SSRE) and spatially unstructured (SURE) components. The RE 
models incorporated eigen-orthogonal eigenvectors derived from 
a geographic connectivity matrix to account for SSRE and SURE 
by standardizable z scores stratified by multi-month, infection 
yield, due to spilled-over, hierarchical diffusion of the virus at the 
sub-county district-level. Subsequently, the authors calculated the 
conditional probabilities and derived the distribution functions for 
the regressed estimator determinants, including the probability 
density function, the cumulative density function, and the quantile 
function. A Poisson random variable mean response specification 
was written as follows in Python: where esitk and eHith, respective-
ly, were the ith elements of the K NT<  and H NT<  selected eigen-
vectors. Estk and EHth were extractable from the doubly centered 
dataset. The expectation attached to the equation, i.e., R SURE≡ , 
was satisfiable, with both having trivial SSRE components.

In the Markovian, eigen-Bayesian, non-frequentist semipara-
metric context, the SSRE component was robustly modelled with 
a conditional autoregressive specification which captured resid-
ual, non-asymptotical, non-zero autocovariance (i.e., geographic 
non-chaos), and latent geospatial non-multicollinearity in the re-
gressively prognosticated, aggregation/non-aggregation-oriented, 
COVID-19, specified, diagnostically stratified, capture point, estima-
tor determinant clustering propensities. The model’s variance im-
plied a substantial variability in the prevalence of COVID-19 across 
districts due to the hierarchical diffusion of the virus. Proved that 
scalable, site-specific, eigen-spatial filters are useful in revealing 
the influence of non-normality [e.g., semi-parametric heterogeneity 
of erroneous variances (i.e., heteroscedasticity), non-eigen-orthog-
onal Ness, etc.] in an empirical dataset of sampled, georeferenced, 
sub-county, stratifiable, explanatory variables due to violations 
of regression assumptions in eigenvector geo-space. Although a 
semi-parametric, eigen-Bayesian, non-frequentist, Markovian, sig-
nature, capture point model is accurate in the prediction of strat-
ifiable, georeferenceable, district-level scalable locations, spatially 
compared with a global model.

This model formulation has not been rigorously tested for 
regression violations in which non-homogenous, erroneous es-
timator determinants and their evidential uncertainty-oriented 
probabilities vary across eigen-Bayesian eigenvector geo-spatio-
temporally. Time has been added to account for events such as cell 
divisions [11] using three differential equation (DDE) models of cy-
cling and quiescent hematopoietic stem cells (HSCs), with constant, 
distributed, and state-dependent delays. These delays commonly 
represent the time to complete one cell division. The system with 
distribution delays has been derived from age-structured partial 
differential equations (PDEs). All three models have been applied 
to study periodic hematological diseases, which are characterized 
by temporal oscillations in various blood cell populations. Unfortu-
nately, all three models produce heteroscedastic, zero-autocorrelat-
ed, temporal, multicollinear uncertainties in periodic solutions.

Hence, the nature of oscillations in a capture point, county-lev-
el scalable, georeferenceable, time series, oncological-related, 
forecast-oriented signature model would be mis-specified, thus 
impairing implementation of a social messaging media platform 
targeting stratifiable, zip code level georeferenceable, hot/cold 
spots of potential, oncological-related patients using an intelligent, 
infused, AI-ML, smartphone mobile app. Time noise due to viola-
tions of regression assumptions in eigenvector geo-space would 
not be quantifiable using current uncertainty-oriented algorithms 
established in the literature. To explore non-Gaussian, time series, 
sensitive regressable oscillations that occur in multiple cell lines 
simultaneously [12] combined constant DDEs representing HSCs, 
leukocytes, erythrocytes, and platelets. This model included more 
biological detail than those mentioned earlier in the literature, in 
that it replaced the generic mature cell compartment with three 
varying temporal cell lines. The model was later applied to cycli-
cal neutropenia and G-CSF therapy but failed to reveal Gaussian, 
non-noisy, significant, regression-related, capture point, clinically 
based, time-sensitive covariates [13].
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In general, deterministic ODE and DDE models, like the ones 
contributed in literature, can serve as potential approximations 
for heuristically optimizing regression-oriented, oncological-re-
lated, capture point, scalable, predictive, model estimator deter-
minants geospatially but not geo-spatiotemporally. Hence, when 
considering oncological-related, geospatial, sampled, county-level, 
scalable, signatured, county, zip code stratifiable, capture points, [ 
e.g., sampled, LULC and sociodemographic, georeferenceable hot/
cold spots of leukemia patients for three years], stochasticity due 
to violations of regression assumptions [i.e., time series dependent, 
zero non-Gaussian autocorrelation, latent heteroscedasticity, mul-
ticollinearity, etc.] would play a key role in generating false posi-
tive, county-level, hot/cold spot, sentinel intervention sites. Sto-
chasticity in time series sensitive oncological data can occur due 
to the random fluctuations or unpredictable variations that occur 
over time [14]. It is essentially the concept of randomness applied 
to a time-dependent process.

This can manifest in various ways in an empirical sampled 
dataset of stratifiable oncological-related, time series, sensitive, 
capture point scalable, georeferenced, county-level, epidemiolog-
ical, estimator determinants, [e.g., zip code hot spots of potential 
CLL/SLL patient households] such as random changes in environ-
mental conditions affecting potential populations or random events 
within the population itself. Currently, forecast-oriented, scalable, 
signature, capture point, georeferenceable, LULC and sociodemo-
graphic, regression forecast-oriented, oncological regression maps 
contributed in the literature are potentially temporally asymptot-
ically heteroscedastic, and or non-Gaussian, zero-autocorrelated, 
multicollinear, since no test for temporal overdispersion has been 
imposed upon the estimator determinant residual outliers. Hence, 
the data generated from an oncological model may not be employ-
able for implementing targeted zip code-level prevention and treat-
ment social media messaging platforms using any AI-ML-infused 
smartphone mobile app.

Multivariate, non-linear, partial least square (PLS) regression 
may allow non-asymptotical, time series, dependent, non-hetero-
scedastic, non-multicollinear, capture point regression modeling 
of complex sampled, georeferenced, stratifiable non-zero autocor-
related, county level, hot/cold spot causation covariate, interpo-
lative signatures of oncological events[e.g., zip code time series, 
sampled, LULC and sociodemographic, stratified estimator deter-
minants that facilitate metastasis in a variety of leukemic subtypes 
during invasion into a specific high income, White or Asian neigh-
borhood] by considering different factors at varying sample frames. 
This may aid in optimally implementing geo-spatiotemporally tar-
geted social media messaging platforms at the county zip code level 
using an infused, AI-ML intelligent, smartphone interactive app. It 
may be a valuable method for heuristically optimizing georefer-
enceable, capture point, regression, time series, models of oncol-
ogy-related, high-dimensional, county, zip code, sampled, capture 
point signature data as derived from genomics, proteomics, and 
peptidomics.

In the presence of multiple responses, it may be of particular 
interest how to approximate non-asymptotical temporally ho-

moscedastic dissectible signatured, capture point, oncological 
prognosticative model, georeferenced, time series explanatory 
estimator determinant regressed residuals to reveal the impor-
tance of singular non-Gaussian, non-multicollinear, hot/cold spot 
non-heteroscedastic, stratifiable, estimator determinant, capture 
point, feature attributes with regard to individual responses (e.g., 
non-zero autocorrelatable, zip code level, household, capture point, 
LULC and sociodemographic, interpolated, variable selection) [15], 
performances of empirically stratifiable, multivariate, non-linear, 
least square regression coefficients were selected as relevant ob-
servational sampled, prognosticative, signatured, capture point, 
estimator determinants for different responses in multi-omics data 
collections for mapping CLL, which were investigated by means of 
a receiver operating characteristic (ROC) analysis. For optimally 
and regressively quantifying the simulated data, the researchers 
mimicked the covariance structures of a georeferenced leukemia 
stratified, capture point, signature, estimator determinant sampled 
temporal dataset to generate matrices of predictors and responses.

The relevant observational evidential prognosticators were set 
a priori. The influences of noise, the source of data with a differ-
ent covariance structure, and the size of the relevant stratifiable 
estimator determinants were not investigated. Although results 
demonstrated the applicability of the non-linear, multivariate, least 
square, CLL-dependent, capture point model estimator determi-
nants using omics-type of data, regression violations of assump-
tions in time, non-homoscedasticity, and latent multicollinearity 
impaired quantification of uncertainty-oriented validation approx-
imation methods. Interestingly, the least absolute shrinkage and 
selection operator regression could not be provided. The reason for 
this failure is that least squares assume the expected value of all 
error terms, when squared, is the same at any given georeferenced 
capture point, i.e., homoscedasticity. This assumption is violated 
in every temporally sensitive, oncological-related, prognosticative, 
State-level, county, or zip code, signature, stratifiable capture point 
model contributed to the literature since no author has investigated 
error in time due to violations of regression assumptions in model 
residuals.

Data in which the time variances of the error terms are not 
equal, in which the error terms may reasonably be expected to be 
larger for some ranges of the data than for others, in a zip code 
stratifiable, estimator determinant, empirical sampled dataset. 
The model residuals would suffer from propagation, inconspicu-
ous, non-Gaussian, asymptotical heteroscedasticity or latent mul-
ticollinearity and zero autocorrelation. The standard warning for 
oncological researchers and other research collaborators is that 
in the presence of non-Gaussian, temporal heteroscedasticity, zero 
autocorrelation and or latent multicollinearity embedded in an em-
pirical, sampled, georeferenced, capture point, signature regressed 
dataset of interpolated, county, zip code, stratifiable estimator 
determinants, the coefficients for an ordinary least squares [OLS] 
would be biased, and the confidence intervals [CIs] approximated 
would be too narrow. This would render a false sense of precision in 
any regressed, geo-spatiotemporal, prognosticated, oncological-re-
lated, georeferenceable, capture point, hot or cold spot zip code, 
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stratified, potential oncological-related patient household.

The main input to these tests would be the time series depen-
dent, explanatory residuals rendered from an oncological-related, 
regression, county-level, scalable, prognosticative, capture point, 
signature, stratified model (e.g., OLS). The null hypothesis would 
be that the regressed, capture point, time series, forecasted deriva-
tives rendered from the signature model are distributed with equal 
variance. If the p-value is smaller than the significance level in the 
prognosticated regression model output, an oncologist or research-
er collaborator could confidently reject this hypothesis. This means 
that the time series is heteroscedastic. The significance level is often 
set to a value up to 0.05 in these paradigms. The statsmodels Py-
thon library has an implementation of three tests, which may be us-
able for quantifying time series, dependent, non-asymptoticalness, 
latent multicollinearity, zero non-Gaussian autocorrelation, and or 
non-homoscedasticity in an empirical georeferenced, stratifiable, 
county sampled dataset of oncological-related, zip code, hot/cold 
spot, explanatory, capture point, sampled variables scalable to the 
State level.

Oncological modelers and or researchers could theoretically 
and operationally test for non-Gaussianism due to violations of re-
gression in time in these estimator determinant datasets post-time 
series capture point model construction for heuristically optimally 
optimizing targeting, potential, georeferenceable, county-level, zip 
code leukemia patient households using the  Breusch-Pagan  (BP) 
test, White test, or the Goldfeld-Quandt  tests. These tests may be 
applicable for optimally implementing prevention social media 
messaging smartphone-infused AI-ML platforms for targeting geo-
referenceable, zip code, stratifiable, hot spot clusters of potential 
oncological-related patient households at the county level. The BP 
test is a statistical way used to test the null hypothesis that errors 
in a regression model are homoscedastic [16]. Rejecting the null 
hypothesis would indicate the presence of heteroscedasticity in 
any explanatory time series, sensitive, oncological-related, coun-
ty, zip code, signatured, capture point, prognosticative regression 
model. Steps to perform the BP Test for an empirical sampled, geo-

referenceable dataset of county-level, zip code, stratifiable, onco-
logical-related, estimator determinants include fitting the sampled 
time series, capture point, independent variables into the original 
regression and computing the residualsi.e., 

0 1 ... 0 1 ...Yi Xi kXk iYi Xi kXk iβ β β β β β= + + + +∈ = + + + +∈ ​.

Subsequently, squaring the residuals and regressing the squared 
residuals may reveal heteroscedasticity and other non-Gaussian-
ism due to violations of regression assumptions in time.Utilizing 

^ 2 0 1 1 ... ^ 2 0 1 1 ...u c c x ckxk iu c c x ckxk i= + + + +∈ = + + + +∈
,​ where the dependent variable ^ 2 ^ 2u u , may allow representing 
the squared residuals, which could be usable to calculate the BP sta-
tistic and, hence, reject the null hypothesis if the p-value is less than 
0.05. The significant BP test statistics reject the null hypothesis of 
homoscedasticity if the presence of heteroscedasticity is detected. 
Unfortunately, the test does not detail how to achieve Gaussian, 
county, zip code level, diagnostically stratifiable, non-zero auto-
correlatable, homoscedastic, non-multicollinear, non-asymptotical 
regression coefficients temporally, hence impairing precise quanti-
fication of which dependent variables significantly would influence 
the variance of the forecasted residuals in a hot/cold spot, georef-
erenceable, oncological-related, prognosticative, signature, inter-
polated, capture point model.

The White test is similar to the BP test but is able to test non-lin-
ear, non-Gaussian forms of heteroscedasticity. Unlike the  BP  test, 
which requires a predefined functional form for the variance, the 
White test employs both the squares and cross-products of pro-
spective explanatory variables in an auxiliary regression. Initially, 
an oncologist or research collaborator would fit the original regres-
sion and compute the temporal, sensitive, capture point, oncologi-
cal stratified residualsi.e., 

0 1 ... 0 1 ...Yi Xi kXk iYi Xi kXk iβ β β β β β= + + + +∈ = + + + +∈ .

Thereafter, the investigators would regress the squared residu-
als on all independent variables, their squares, and cross products 
which could theoretically render

By calculating the  White Statistic, an oncologist or research 
collaborator could detect more complex forms of erroneous, 
non-Gaussianism [i.e.., erroneous time series heteroscedastic, la-
tent zero autocorrelated and or multicollinear estimator determi-
nants] that may not be linearly related due to violations of regres-
sion assumptions embedded inconspicuously in the georeferenced, 
prognosticative capture point, signature, interpolated model [e.g., 
sensitive remission periods].

Regrettably, although the White test can identify several spac-
es and time-related, heteroscedastic, non-multicollinear, non-zero 
autocorrelatable functional forms, it suffers from  reduced power 
in smaller sample sizes. This is due to the inclusion of the squares 
and cross-products of prognosticative variables in the auxiliary re-
gression, which would increase the degrees of freedom in any time 

series dependent estimator determinant, oncological-related, cap-
ture point signature model. Increasing degrees of freedom in such 
a paradigm would lead to overfitting, especially with smaller, sam-
pled, time series, stratified estimator determinant datasets. The 
model would become too complex and capture specific patterns in 
the training data that could not be generalized well to new unseen 
data [e.g., prognosticated centroid coordinates of a georeferenced, 
time series, zip code, hot spot, sentinel site of potential CML pa-
tient households stratified by LULC, or sociodemographic, capture 
point estimator determinants]. Small empirical, sampled, datasets 
are common in scalable, regression- oncological-related, signature, 
interpolative, capture point data sets especially for implementing 
targeted prevention social messaging protocols using mobile, real 
time, infused, AI-ML intelligent, iOS app dashboards at the county 

^ 2 0 1 1 2 2 3 12 4 22 5 1 2 ^ 2 0 1 1 2 2 3 12 4 22 5 1 2 .u c c x c x c x c x c x x iu c c x c x c x c x c x x i= + + + + + ∗ +∈ = + + + + + ∗ +∈
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zip code level, which can make the test less effective, as the limited 
data points would be distributed across approximated parameters.

The Goldfeld-Quandt test is suited for prevention-oriented, re-
gressively forecastable, oncological-related time series, dependent 
model estimators, which can include capture points, signatures, 
interpolated values, georeferenced data, county, zip code stratifica-
tion, and categorical variables. The test employs a split-sample ap-
proach to assess differences in variance across these segments. Em-
pirical sampled oncological data can be divided into two time series 
groups based on a predetermined criterion. The hypotheses formu-
lation for this test is 0 : 12 02,H σ σ= : 12 02 0 : 12 02,HA Hσ σ σ σ≠ =

: 12 02HA σ σ= . The gqtest () function from the lmtest package in R 
is designed to perform the Goldfeld-Quandt test. However, the test 
requires several parameters to attain a robust output. Furthermore, 
the signature capture point, time series, sensitive, oncological re-
gression model generated would specify the percentage of prog-
nosticated observations for the split, not the empirical sampled 
estimator determinant regressed dataset. Hence, there would be 
variable bias in any residual, capture point, time series, dependent, 
signature, interpolated, oncological-related, regression model, for 
optimally implementing targeted prevention social messaging pro-
tocols at the county zip code level using an infused AI-ML smart-
phone, mobile intelligent application.

So far, we have interpreted a rejection of the null hypothesis of 
non-homoscedasticity, zero autocorrelation, latent multicollinear-
ity due to temporal asymptoticalness, and other non-Gaussian 
regression residual abnormalities. Due to violations of temporal 
regression assumptions, optimization of an empirical dataset of 
georeferenceable, capture point, stratifiable, zip code, oncologi-
cal-related, hot/cold spot, sampled, scalable, capture point, signa-
ture, model non-Gaussian estimator determinants cannot be quan-
tified in any fashion. This would be due to an incorrect form of the 
model applied. For example, omitting quadratic terms or employing 
a level model when a log model may be more appropriate may not 
heuristically optimize signature, capture point, forecast-oriented, 
geo-referenceable, mapping of stratifiable, potential, zip code-level, 
hot spots of leukemia patient households for parsimoniously im-
plementing county, social media prevention protocols using AI-ML 
infused iOS dashboards. A precision significant quadratic test may 
be generatable for optimally quantifying asymptotical temporal 
heteroscedasticity, latent multicollinearity, and other non-Gaussian 
zero autocorrelated regression renderings from a georeference-
able, state or county level, prognosticative, capture point, zip code. 
stratifiable, signature, scalable model due to violation of regression 
assumptions in time.

Quadratic heteroscedasticity refers to a specific type of hetero-
scedasticity, where the variance of the error term in a regression 
model is not constant and varies in a quadratic manner with re-
spect to the independent variable(s). In simpler terms, it means the 
spread of the sampled data capture points [e.g., stratified, LULC, and 
or sociodemographic, signature interpolated, CML or CLL, stratified, 
estimator determinant data] around the regression line changes in 
a curved pattern as one moves along the line. Temporal quadratic 
heteroscedasticity refers to a specific type of differentiation in the 

variance of the error terms (also known as the residual variance) 
of a time series model, where this variance changes over time in 
a quadratic manner [17]. Analyzing the quadratic heteroscedastic 
effects on georeferenced, empirical sampled, capture point, depen-
dent, aggregation/non-aggregation, county, stratifiable sites for 
testing changes in interpolated, empirical sampled, capture point 
signatures due to violations of regression assumptions in time, 
may allow an oncologist or research collaborator to quantitate the 
effects on regressively forecasted, non-robust, zip code level, hot/
cold spot, asymptotical scalable processes.

Hence, it would be wiser for an oncologist or research collab-
orator to study the non-asymptotic validation of the statistics and 
examine bootstrap procedures for approximating finite sample dis-
tribution in an oncological-related, signature interpolative models. 
The bootstrap method is a statistical resampling technique used to 
estimate properties of a population, such as the mean, standard de-
viation, or CIs, by repeatedly sampling from a dataset with replace-
ment. It is particularly useful when the theoretical distribution of 
statistics is unknown or difficult to derive analytically. Simulation 
results may show an improvement in the size of the temporal ho-
moscedasticity tests and a power that is clearly non-comparable 
with the best alternative in the literature for precision modelling 
oncological stratifiable data. By quantitating the presence of a 
conditionally heteroscedastic and other non-Gaussian effects due 
to violations in regression assumption in time on the error terms 
in a scalable, county, zip code stratifiable, oncological-related, sig-
nature, capture point, state-level prognosticative model, a novel 
measure may be proposed for the information loss caused by the 
residual interpolated asymptotical, zero autocorrelated, heterosce-
dastic, and or non-Gaussian multicollinear coefficients.

A non-stationary process may be geo-spatiotemporally con-
ceived in a probabilistic, signature, capture point, county-level, 
zip code georeferenceable paradigm. Characterizing solutions for 
optimizing expectations of heuristically regressable multivari-
ate, non-zero autocorrelatable, non-multicollinear, homoscedas-
tic stochastic processes, in a county, hot/cold spot, capture point, 
signature, prognosticative scalable oncological model may allow 
analyzing time series, sensitive, variance changes in empirical 
sampled estimator determinant dataset while examining stratifi-
able non-linearizable processes at the zip code level. Since testing 
for conditional asymptotical temporal heteroscedasticity, latent 
multicollinearity, and non-Gaussian zero autocorrelation is often 
based on aggregates/non-aggregates, in eigenvector geo-space. In 
this experiment, we studied the effects of employing stratifiable, 
erroneous georeferenceable county, zip code, stratifiable, data cap-
ture points due to violations of regression assumptions in time in 
a stratified, capture point, oncological-related empirical, estimator 
determinant uncertainty-oriented dataset.

We employ multiple analytical regression error tests, including 
a Markovian, eigen-Bayesian semiparametric, non-frequentist, time 
series sensitive eigen-autocorrelation analysis. We assumed that 
results from time series dependent, interpolative, signature, cap-
ture point, georeferenceable regression models would have major 
importance in terms of precision for heuristically optimizing prog-
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nosticative signature maps of county-level, zip code stratifiable, 
hot spots of oncological related patient households. In so doing, we 
assumed prevention social messaging protocols could be optimal-
ly targeted at the geographically identifiable, county zip code level 
using an infused smartphone, AI-ML, mobile intelligent app. We 
study the effects of employing aggregated/non-aggregated, onco-
logical-related, signature, time series, sampled, capture point data 
for heuristically quantifying asymptotical heteroscedasticity, latent 
multicollinearity, zero autocorrelation, and other non-Gaussianism 
due to violations of regression assumptions in time for heuristical-
ly optimizing targeting county-level, stratifiable, georeferenceable, 
zip code hot/cold spots of leukemia patient households in Florida.

We use signature interpolations of scalable, LULC, and socio-
demographic capture points retrieved from oncological data tests 
often fail to detect the temporal heteroscedastic nature of georef-
erenceable stratifiable, temporal, interpolatable, LULC, and socio-
demographic signatured, capture point empirical sampled data, 
which can lead to mis-specified outcomes. We attempt to quantify 
violations of regression assumptions [e.g., quadratic heteroscedas-
ticity, latent multicollinearity, non-Gaussian, zero autocorrelation, 
etc.] in a scalable, signature, interpolative, capture point, time se-
ries, georeferenceable county-level, stratifiable, forecast-oriented, 
oncological model. We did so for optimally targeting zip code level 
hot spots of potential leukemia-related patient households for im-
plementing prevention and treatment-oriented, social media mes-
saging platforms using an intelligent, AI-ML, mobile smartphone 
app in Florida. One of the most influential models that describes 
the dynamics of temporal quadratic heteroscedasticity and other 
non-Gaussianism due to violations of regression is the Autoregres-
sive Conditional Heteroscedasticity (ARCH) model by [18] and the 
Generalized ARCH (GARCH) model by [19], which is a more parsi-
monious extension of ARCH.

The standard GARCH model of has successfully captured many 
characteristics of financial asset returns and forms the basis for a 
wide range of expressions employed to retrieve various empirical 
features of returns data. For instance, to capture the stylized fact of 
the asymmetric effect, [20] employed a range of models, including 
the exponential GARCH (eGARCH) model [21], the Glosten-Jaganna-
than-Runkle GARCH model (GJR-GARCH) of [22], the absolute value 
GARCH (aGARCH) model of [23], and the Bad Environment-Good 
Environment (BEGE) model [24]. Given the wide range of GARCH-
type models, it is crucial to develop an efficient statistical signature, 
capture point prognosticative real-time, model inference frame-
work to select between empirical sampled, asymptotical/non-as-
ymptotical, capture point, non-zero/zero autocorrelated, Gauss-
ian/non-Gaussian, signature interpolated capture point hot/cold 
spot model renderings. In so doing, over dispersed, multicollinear, 
and heteroscedastic estimator determinant, zero-autocorrelated 
temporal noise in forecasted regression residuals may be precisely 
denoised and hence optimally quantifiable.

Here, we temporally rectify an empirical sampled georeferenced 
dataset due to violations of regression assumptions in time for heu-
ristically optimizing targeting zip code level “hot spots” of potential 
leukemia-related patient households for implementing prevention 

and treatment, oriented, social media intelligent infused, AI-ML, 
mobile smartphone app messaging platforms. We describe the 
non-Gaussian, time-sensitive, error process in the empirical dataset 
of the regressed georeferenced, zip code stratifiable, capture point, 
oncological-related, regressively forecasted signature, model, time 
series sampled estimator determinants. We assumed that the er-
rors were an innovation process, that is, we assumed that the condi-
tional mean of the errors is zero in the regressed capture point, on-
cological model, estimator determinant prognostications. We write 
the time series error process as: t tztε σ=  in Python, where tσ  is 
the conditional standard deviation and the z terms are a sequence 
of independent, zero-mean, unit-variance, non-normally distribut-
ed county-level, stratifiable, zip code, capture point, heteroscedas-
tic, multicollinear, signature, sampled, potential zero autocorrelat-
ed, LULC, and sociodemographic signature estimator determinants.

Under this assumption, the unconditional variance of the tem-
poral error process was the unconditional mean of the conditional 
variance in the regressed time series forecasts. Interestingly, un-
conditional variance of the process variable does not, in general, 
coincide with the unconditional variance of time-sensitive, latent 
autocorrelation error in empirical sampled oncological-related 
models contributed to the literature. Modelling signatured, sam-
pled, zip code level, stratifiable, prognosticative, georeferenceable, 
time series, county, estimator determinants are a major application 
and area of research in oncology. One of the challenges particular 
to this field is the presence of time series propagation and their 
non-Gaussian effects due to violations of regression assumptions, 
meaning that the volatility of the considered process in general is 
not a constant in these time-sensitive paradigms. In this experi-
ment, the volatility of an empirical georeferenced regressed data-
set of zip code signatured, LULC, and sociodemographic, stratified, 
capture point, interpolated estimator determinants was temporally 
quantified for asymptoticalness, heteroscedasticity, and or multi-
collinearity, employing the square root of the conditional variance 
of the log process given its previous autocorrelatable capture point 
empirical sampled interpolated discrete integer values at the coun-
ty-level in florida.

That is, if Pt was the time series sampled, scaled-up, capture 
point, georeferenced, signature, interpolated, zip code stratified, 
hot spot evaluated at time t. Then we assumed we could define 
the log returns log 1 logXt Pt Pt= + −  when the volatility tσ  was 
expressible as 22 1t Var X t Ftσ  = −   and 1Ft −  when the σ -algebra 
generated was 0,..., 1X Xt − . Heuristically, it makes sense that the 
volatility of the regressed oncological processes would change over 
time, so it is vital to have time series disturbance-free data, which 
may allow robustly implementing social media messaging plat-
forms for precisely regressively targeting georeferenceable hot/
cold spots of potential leukemia patient households at the county, 
zip code level using infused, interactive AI-ML smartphone apps. In 
this experiment, the package bayes GARCH implemented the Mar-
kovian eigen-Bayesian, non-frequentist, semiparametric uncertain-
ty estimation procedure as described in for the GARCH (1,1) model 
with Student-t innovations.

The approach consisted of an eigenfunction, second-order, ei-
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gen-filtered eigen-algorithm where the proposal distributions were 
parsimoniously constructed from auxiliary autoregressive process-
es using squared, zip code stratified, LULC, and sociodemographic, 
georeferenced, hot and cold spot, non-stochastically signature, in-
terpolated, capture point scaled-up observations. Our assumption 
was that time series disturbances quantified in an eigen-Bayesian 
Markovian, semi-parametric, non-frequentist, prognosticative, sig-
nature interpolative, capture point model may allow visualization 
of regression violations in time of sampled stratified estimator 
determinants by specifying a functional form that can accommo-
date the non-constant variance over time. We assumed a Markov 
Chain Monte Carlo (MCMC) approach would be capable of detect-
ing and down-weighting the aberrant, time series, scaled-up, sig-
nature, capture point, LULC, and sociodemographic observations. 
An issue with georeferenced, capture point, stochastically or deter-
ministically, interpolated, temporal asymptotical, eigen-Bayesian, 
semi-parametric non-frequentist estimation still to be resolved in 
the literature is developing an efficient method for sampling from 
the posterior distribution based on Monte Carlo methods.

The most employed approach in the literature is the algorith-
mic MCMC method, which has been utilized for Bayesian analysis 
of the GARCH class of models. In this experiment, we employed an 
eigen-Bayesian, MCMC, non-frequentist uncertainty-oriented mod-
el and a non-bilinear, non-stochastic, interpolator for generating 
precise, geo-spatiotemporal noiseless, scalable, non-asymptotical, 
georeferenceable, signature, capture point, stratifiable, precisely 
interpolative non-zero-autocorrelatable, homoscedastic, non-mul-
ticollinear, prognosticative, model estimator determinants. We as-
sumed that the non-asymptotical autoregressive limited dependent 
variable using a stochastic, non-bilinear interpolator would accom-
modate the sampled, oncological-related, capture point, county, 
zip code stratifiable, estimator determinant, georeferenced, time 
series data infected with heteroscedasticity, multicollinearity, or 
zero non-Gaussian autocorrelation due to violations of regression 
in time. A covariance matrix was injected into an autoregressive 
model to observe non-asymptotic behavior via the finite properties 
of the prognosticative, capture point, county, and zip code signature 
model.

Currently, social media messaging apps for oncological in-
terventions can only employ non-temporal non-precision, fixed, 
computational regression models for various applications due to 
violations of assumptions in empirical sampled clinical estimator 
determinants time series sensitive datasets, leading to misspecifi-
cations in the prevention and rehabilitation of oncological patients. 
Non-inclusion of precision data can cause premature death in high-
risk oncological patients [25]. In this experiment, a two-dimension-
al (2) non-stochastic, non-dichotomous, signature state-level inter-
polation was conducted to estimate county-level georeferenceable, 
zip code locations of multiple, hot/cold spot, sentinel site, LULC, 
and sociodemographic, stratified, empirical sampled, explanatory 
estimator determinants within a 2d grid of known potential, ex-
planatory, hot/cold spot, data capture points. The non-stochastic 
interpolator employed the values of the four nearest signature data 
capture points to calculate the regressed estimator determinant in-

teger values sampled at the county zip code level in the regression 
forecast signature map at a given position in a Python script.

We employed general regression models, including GARCH and 
stochastic volatility formulations. Integrated model likelihoods 
were estimated and compared amongst competing signatured, cap-
ture point, LULC, and sociodemographic, interpolated classes of vol-
atility in the vulnerability model misspecifications due to violations 
of regression assumptions in time. The performance of the GARCH 
and a stochastic volatility scalable, time series, dependent, signa-
ture, capture point ARCH model, incorporating fat-tailed errors and 
Markovian semi-parametrized, eigen-Bayesian, non-frequentist, 
eigen-spatial filter eigen-algorithms was employed, incorporating 
integrated likelihoods and Moran’s eigen-filtered residuals. We in-
corporated the empirically stratified, geo-spatiotemporal sampled, 
capture point sociodemographic and LULC, georeferenced zip code 
estimator determinants with model uncertainty estimated. We 
aimed to model the conditional volatility of a time series, signature, 
capture point, eigen-Bayesian, semi-parametrized, Markovian, 
non-frequentist, GARCH/ARCH, forecast-oriented, stratifiable, hot/
cold spot model for heuristically optimizing precision targeting of 
social media messaging platforms using infused AI-ML smartphone 
mobile interactive apps for predictive vulnerability mapping leuke-
mia patient households at the county zip code level in Florida.

The speed and accuracy of data transfer in an artificial intel-
ligence [AI] infused machine learned [ML], mobile, interactive, 
smartphone application (app) can vary significantly depending on 
network conditions, server response times, optimization, and de-
vice performance. Currently, selective search engines embedded in 
mobile, iOS, health apps merge regressed data based on engineered 
low-level features and have an order of magnitude of up to 91.3 sec-
onds per information text in a CPU implementation. Faster Regional 
Convolution Neural Network [R-CNN] enables end-to-end detector 
training on shared convolutional features and shows compelling ac-
curacy and speed [26]. Unlike traditional batch processing, where 
data is collected and processed periodically in predefined portions, 
real-time R-CNN integration operates on a near-instantaneous ba-
sis. This means that prevention, timely diagnosis, and rehabilitation 
of oncological-related, intelligent smartphone health data captured 
can be retrieved, transferred, and archived in milliseconds. How-
ever, if the model is mis-specified with embedded violations of re-
gression assumptions in time, this may allow the residual to falsely 
target county, zip code level, oncological hot spots [i.e., clusters of 
potential CML patient households].

Currently, mobile oncology-related health apps may only em-
ploy fixed computational models for various applications due to 
non-real-time data transfer, leading to misspecifications in the 
prevention and rehabilitation of oncological emergency-related 
injuries. Non-inclusion of real-time vital cardiovascular signs [e.g., 
chest pressure, nausea, shortness of breath, vertigo, unilateral fa-
cial paralysis, etc.] can cause premature death in high-risk potential 
oncology-related patients. Introduced a Region Proposal Network 
(RPN). That shares full-image real-time convolutional features 
within an infused, intelligent, AI-ML, real-time detection network 
in an interactive, continuously self-learning smartphone, mobile 
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app for enabling cost-free region proposals [e.g., instantaneous 
body physiological responses, changes in symptoms, incentivized 
protocols for adherence to prescribed medication, diet, physical ac-
tivity, exercise stress tests, and follow-up care, etc.]. A fully merged 
RPN and Faster R-CNN deep convolutional unified network infused 
into a mobile iOS app dashboard may be employed to simultane-
ously train, aggregate, and predict object bounds and object scores 
for implementing real-time prevention, timely diagnosis, and reha-
bilitation of oncological-related protocols whose effective running 
time for proposals may be estimated at 10.3 milliseconds.

Advances like R-CNN have reduced the running time of re-
al-time detection mobile networks, exposing RPN computation as a 
bottleneck. However, currently there are no prevention, timeliness 
diagnosis and rehabilitation of oncological-related, iOS mobile apps 
in the literature, or on the on-line commercial market that has a 
real time, R-CNN network infused into a continuously self-learn-
ing app for enabling cost-free region proposals which may have 
multiple applications [e.g., instantaneous detection of quivering or 
irregular heartbeat, due to arrythmias, from radiation therapy, cre-
ating an interactive lifetime visualization of blood pressure trends, 
medication compliance, GPS maps of closet locations of hospital 
emergency centers for public use, cloud storage, security, etc.,]. We 
would like to introduce a real-time RPN, intelligent AI-ML infused 
interactive mobile app that is trainable end-to-end to generate 
high-quality region proposals, for real-time data retrieval, tracking, 
transference, and archiving of prevention, timely diagnosis, and 
rehabilitation of oncological processes and emergencies within an 
R-CNN. This context-aware augmented and virtual reality mobile 
application will utilize county zip code level location data, object 
recognition software, and 3D features in an R-CNN/RPN unified re-
al-time network to provide state-of-the-art data retrieval, tracking, 
and transference.

The app dashboard will enable a unified, deep-learning-based 
regression prognosticative modelling detection system to run at 
real-time frame rates for heuristically optimizing a social mes-
saging platform for targeting county, zip code, and potential on-
cological patients [e.g., a hot spot of leukemia potential patient 
households]. In order to generate a robust predictive signature 
oncological, county, zip code, vulnerability signature regression 
model, we let  rt   be the dependent variable [i.e., a georeferenced, 
signatured, LULC or sociodemographic, stratified, hot cold spot, 
spot, zip code capture point] in time t. We modelled this series as: 
rt t trt t tµ σ µ σ= + ∈ = + ∈ . Here, mu was the expected value of 

,rt tσ  was the standard deviation of rt  in time t, and ϵt was an error 
term for time t. The outline of the paper is as follows. The models 
and the conditional heteroscedasticity tests are introduced early. 
The distribution of the test statistics affected by temporally sensi-
tive, signature modelled, interpolated hot/cold spots is investigated 
to determine if power loss worsens with the order of aggregation 
in a georeferenceable zip code, stratifiable, scalable, capture point, 
semi-parametric, Markovian, eigen-Bayesian prognosticative, 
non-frequentist, oncological-related, signature, estimator determi-
nant model.

The main results on the temporal uncertainty model output of 
the processes are subsequently summarized using GARCH/ARCH 
model outputs. The effects of signature, interpolated, capture point 
hot/cold spot phenomenon are studied thereafter to cover the ef-
fects on the test statistics and on their power. Robustness of the 
tests under a more generalizable homoscedastic, non-asymptotic, 
non-multicollinear, non-zero autocorrelated temporal process is 
assessed, and an empirical application is provided for precision tar-
geting oncological and other leukemia-related patient households 
for heuristically optimizing a social media messaging AI-ML in-
fused smartphone app platform. Our objective in this research was 
to construct a robust, time-sensitive, geo-spatiotemporal, MCMC, 
eigen-Bayesian semiparametric regression model  to robustify 
type I and type II errors in eigenvector eigen-geospace. The mod-
el we assumed could be used to verify if the temporal regressed, 
eigen-decomposed, Gaussian, latent autocorrelated, non-asymp-
totical, capture point, scalable, zip code stratifiable, oncological-re-
lated, signature prognosticated model estimator determinant out-
puts complied with Tobler’s law of geography.

Our research hypothesis was: Temporally quantified Gaussian 
volatility clustering propensities can enable a regressed time se-
ries, sensitive, non-asymptotical, non-frequentist, iterative, MCMC, 
eigen-Bayesian, regression prognosticative GARCH/ARCH model 
formulation to precisely validate State-wide, scalable, county-level, 
georeferenceable, hot/cold spot capture point zip code, stratifiable, 
LULC, and sociodemographic interpolated signatures and their 
semi-parametrizable estimator determinants incorporating an ei-
genvector approach. The expected outcome we assumed would be 
able to tease out residual, heteroscedasticity, chaotic, non-Gauss-
ian, zero autocorrelated, random georeferenced patterns, asymp-
totical outliers, and latent multicollinearity due to violations of 
regression assumptions in a georeferenced, time series, estimator 
determinant stratified dataset. Doing so, we assumed, would en-
able aiding in implementing a social media platform for optimally 
messaging prevention protocols to potential oncological-related 
patient households at the county zip code level in Florida using an 
infused AI-ML interactive, smartphone app. 

Methodology

Study site description

Florida is located in the Southeastern region of the United 
States, bordered by the Gulf of Mexico to the west, Alabama to the 
northwest, Georgia to the north, the Atlantic Ocean to the east, the 
Straits of Florida to the south, and the Bahamas to the southeast 
[27]. According to the U.S. Census Bureau, the population in this 
state was over 21.5 million as of [28], making it the third-most pop-
ulous state in the United States. The state ranks seventh in popula-
tion density and spans 53,654.8 square miles (138,965 km²) of land 
and 17,748.7 square miles (45,968 km²) of water, ranking 26th in 
area among the states. The state is home to important water bodies, 
including around 7,700 lakes, 50,000 miles of rivers and streams, 
and 700 springs.
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Study site map

Figure 1: Florida map with counties outlined.

Eigen-temporal Analyses

Prior to scaling up (i.e., geo-spatiotemporal interpolation) of 
sampled, 10m resolution, Sentinel 2, sensed, signature, capture 
point, hot and cold spots sampled from zip code 33647 in Hillsbor-
ough County, we improved the empirical sampled county covariate, 
time series, stratified, census abundance count data. Our intention 
was to impose time as a variable into the empirical baseline esti-
mator determinant dataset to generate an interpolated signature 
point map of potential, georeferenceable, county-level stratifiable 
locations of leukemia patient households throughout Florida at the 
county zip code level. The final stratified dataset contained three 
years of sampled, capture point stratified, georeferenced, LULC, 
and sociodemographic estimator determinants, which were sub-
sequently input into a non-bilinear, non-stochastic interpolator for 
signal processing and numerical analysis by leveraging libraries in 
NumPy and SciPy.

We employed a second-order, time-sensitive, eigenfunction ei-
gen-decomposition eigen-algorithm in Python using the numpy.lin-
alg.eig function from the NumPy library. This function calculates the 
eigenvalues and eigenvectors of a square matrix. It has a Moran’s 
coefficient to investigate violations of regression assumptions [i.e., 
non-Gaussian zero temporal autocorrelation] in the county-level, 
interpolated, signature, capture point, stratified zip code, sampled 
estimator determinants. Moran’s eigenvector spatial filtering is a 
novel methodology promoted in spatial statistics, quantitative ge-
ography, and statistical ecology that deals with spatial eigen-auto-
correlation in georeferenced data [29]. Our approach consisted of 
an autocorrelated, time series, sampled, georeferenceable, capture 
point, signature, forecast modeling process where the proposal 
distributions were constructed from Moran’s eigen-spatial filtered 

eigen-algorithms. Moran’s I as a test for global time autocorrelation 
was employed using the following code:

np. random.seed (12345)

mi = esda.moran.Moran(y, wq)

mi.I

The value for the statistic was interpreted against a reference 
distribution using Python Spatial Analysis Library (PySAL) where y 
imported seaborn as sbn:

sbn.kdeplot(mi.sim, shade=True)

plt.vlines(mi.I, 0, 1, color=’r’)

plt.vlines(mi.EI, 0,1)

plt.xlabel(“Moran’s I”)

PySAL is an open-source cross-platform library for geospatial 
data science with an emphasis on vector data written in Python 
[www.python.org]. In addition to the Global autocorrelation statis-
tics, PySAL has many local autocorrelation statistics. Here we com-
puted a local Moran statistic using: 

import esda

wq.transform = ‘r’

lag_price = lp.weights.lag_spatial(wq, df[‘median_pri’])

wq

price = df[‘median_pri’]

b, a = np.polyfit(LULC and sociodemographic county co-
variates lag1)
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f, ax = plt.subplots(1, figsize=(9, 9))

b, a = np.polyfit(price, lag_, 1)

f, ax = plt.subplots(1, figsize=(9, 9))

plt.plot(price, lag_covariate ‘.’,)

# dashed vert at mean of the LULC and sociodemiographic 
covariates

plt.vlines(covariate.mean(), lag_covariate.min(), lag_co-
variate.max(), linestyle=’--’)

# dashed horizontal at mean of lagged price 

plt.hlines(lag_covariate.mean(), covaraite.min(),cobariate 
.max(), linestyle=’--’)

# red line of best fit using global I as slope

plt.plot(covariate, a + b*covariate, ‘r’)

plt.title(‘Moran Scatterplot’)

plt.ylabel(‘Spatial Lag of covariate’)

plt.xlabel(‘ covariate’)

plt.show()

Next, we input the set of empirical sampled, interpolated, sig-
natured, time-sensitive, eigen-decomposed, LULC and sociodemo-
graphic, capture point eigenvectors into a symmetric idempotent 
projection matrix. Mathematically, a matrix ( )P  is idempotent if 
( )^ 2P P= . Our assumption was that temporal filtering using a 
moran index would allow unbiased selection of a georeferenceable 
subset of eigenvectors that would reduce residual zero non-Gauss-
ian, autocorrelation error in the model forecasts. Here, the tem-
poral lag form added the scaled-up, stratified, zip code, LULC, and 
sociodemographic capture point, estimator determinant, sampled 
regression weights delineated from the interpolator, but did not use 
them in constructing the eigenvectors. The eigenvalue is a scalar 
value that is used to multiply with the eigenvector, which in this 
experiment helped in quantifying the sampled, oncological-related, 
county, zip code interpolated, stratified, LULC, and sociodemograph-
ic, time series signatured, capture point, empirical diagonal values 
of the matrix. An eigenvalue is the scalar term that represents the 
transformation of the matrix. The eigenvector is a non-zero vector. 
We employed the interpolated stratified capture point eigenvalues 
and eigenvectors as part of the time series estimator determinant 
eigenvalue decomposition using a diagonal matrix.

Diagonalization is a very interesting technique in the linear 
algebra domain [30]. In this experiment, we used diagonalization 
to find the diagonal matrix PySAL from the square matrix for con-
ducting the eigenvalue decomposition employing various error ma-
trices for identifying non-Gaussian oncological-related, LULC, and 
sociodemographic, time series, estimator determinant regression 
trends. An autoregressive [AR], prognosticative, time series, de-
pendent, capture point model was subsequently constructed from 
the interpolated, stratified, LULC and sociodemographic, time se-
ries, stratified, capture point signatures in PySAL. In this model, Y 
was a function of nearby georeferenced, county, zip code, scaled-

up, oncological-related capture point with Y values [i.e., tempo-
ral linear specification] and/or the residuals of Y as a function of 
nearby Y residuals [i.e., an AR specification]. Euclidean distance 
measurements between sampled capture points were definable in 
terms of an  n-by-n  geographic weights matrix,  C, whose ijc

 diag-
onalized values were 1 if the interpolated, capture point geoloca-
tions  i  and  j were deemed nearby, and 0 otherwise. We adjusted 
this matrix by dividing each row entry by its row sum, with the row 
sums rendered C1, which converted this matrix-to-matrix W.

The  n-by-1 vector [ ]1...
T

nx x  contained the quantitative mea-
surements of a time series sampled, county-level, capture point 
explanatory variable for n georeferenced stratified zip code units 
within an n-by-n spatial weighting matrix W. The formulation for 
Moran’s index of the eigen-time series autocorrelation was: 

( )
( )( )

( )
(2)

2
(2) 1

ij i j

n
ij i i

n w x x x x
I x

w x x=

Σ − −
=

Σ Σ −

where  (2) 1 1

n n

i j= =
Σ Σ Σ   with i j≠ . The diagonalized eigenvalues 

ijw  were the sampled capture point regression weights stored in 
the symmetrical matrix W  ( ). ., ij jii e w w =   that had a null diagonal 
( )0iiw = . The matrix was initially generalizable to an asymmetrical 
matrix W. Matrix W was then quantified by a non-symmetric matrix 

*W in PySAL by employing ( )* * / 2TW W W= + . Moran’s I was rewritten 
using matrix notation: ( )

1 1 1 1

T T

t T T T

n x HHWHHx n x HWHxI x
W x HHx W x Hx

= =  
where ( )11 /TH I n= −  was an eigen-orthogonal projector verifying 
that 2H H=  (i.e., H was independent).

An AR model specification was constructed in PySAL to de-
scribe the time series, variance uncertainty estimates in the leuke-
mia signature analysis. A temporal filter model specification was 
also constructed to describe both Gaussian and non-Gaussian time 
series, erroneous, random, interpolated, signatured, and capture 
point estimator determinants. The resulting AR model specification 
took on the following form:

( )1 1Y WYρ ρ ρ ε= − + +  (2.1) where µ  was the scalar conditional 
mean of Y, and ε was an n-by-1 error vector whose elements were 
statistically independent and identically distributed (i.i.d.) normal-
ly random variates. The temporal sensitive error covariance matrix 
for equation (2.1), analyzed the interpolated, georeferenced, zip 
code, stratified capture point, oncological-related signature covari-
ates as 

( ) ( ) ( )( )
1' ' 2 ,E Y I Y I I W I Wµ µ ρ ρ σ
−   − − = Σ = − −  

where ( )E • denoted the calculus of expectations,  I  was 
the n-by-n identity matrix denoting the matrix transpose operation, 
and 2σ  was the error variance.

A mixture of positive and negative, time series, eigen-decom-
posed eigenvectors were generated from the sampled, stratified, 
county, zip code, signature, interpolated, capture point, oncologi-
cal-related model estimator determinants. In this experiment, two 
different AR parameters appeared in the covariance matrix model 
specification, which were transformed as
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( )( )

1' 2I diag W I diag Wρ ρ σ
−

 ∑ = − < > − < >   

(2.2) where the diagonal matrix of the parameters, diagρ< >  
contained two capture points: ρ+  for those, interpolated zip code 
signatured pairs displaying positive temporal dependency, and ρ . 
for those pairs displaying negative temporal dependency. If positive 
and negative time series autocorrelation processes counterbalance 
each other in a mixture, the sum of the two autocorrelation param-
eters- ( ).ρ ρ+ +  will be close to 0. Next, a time series Jacobian es-
timation was conducted in PySAL using the time series sampled, 
oncological-related, capture point county-level, zip code strati-
fied, prognosticative, model estimator determinants by utilizing 
( )I Iγ+ −+ , for approximating ρ+  and γ  with maximum likelihood 
techniques, and setting ˆ ˆˆρ γρ− += − .

The Jacobian generalized the gradient of a scalar-valued func-
tion of varying, stratified, interpolated, georeferenced estimator de-
terminants, which was generalized by the derivative of a scalar-val-
ued function of a scalar. A scalar-valued function is defined to be a 
function with a single number as its output. A more complex strat-
ifiable, georeferenceable, capture point AR specification was then 
posited in PySAL by generalizing the binary indicator signature 
capture point prognosticative variables. We employed : n mF R R→
as, a function from Euclidean n-space to Euclidean m-space, which 
was also constructed in PySAL using the measured distances be-
tween the georeferenced, county, zip code sampled capture points. 
Such a function was given by m, a stratified signature covariate (i.e., 
component functions), ( )1 1, ny x x , and ( )1,m ny x x . The partial de-
rivatives of all these functions were organized in an m-by-n matrix.

The Jacobian matrix J of F was computable as . This matrix was 
created by ( )1,...,F nJ x x  and 

( )
( )

1

1

,...,
,...,

m

n

y y
x x

∂
∂

. The i th row ( )1,...,i m= of 
this matrix was the gradient of the ith component function ( ):i iy y∇
. The Jacobian matrix was the natural generalization of time series, 
AR georeferenced, vector-valued functions using the derivative and 
the differential of a function. Here, this generalization included an 
inverse function where the non-nullity of the derivative was re-
placed by the non-nullity of the Jacobian determinant, and the mul-
tiplicative inverse of the derivative was replaced by the inverse of 
the Jacobian matrix.

We noted that the model parameter p was a sampled, county, 
georeferenceable zip code, stratifiable, time series, dependent, cap-
ture point, interpolated, estimator determinant in nR  and  F  (i.e., 
time series, LULC or sociodemographic, signature, count integer 
value) which was differentiable at  p; its derivative was given by 

( )FJ p . The model described by  J F (p) was the best linear approx-

imation of F near the signature capture point p, in the sense that: 
( ) ( ) ( )( ) ( )FF x F p J p x p o x p= + − + − (2.3). The structuring 

was discernible temporally in the capture point, oncological fore-
cast model by constructing a linearizable combination of a subset 
of the prognosticated, capture point, georeferenced, LULC, and so-
ciodemographic eigen-decomposed eigenvectors derived from a 
modified geographic weights matrix.

We used ( ) ( )' '11 11 /I C I n− − , which appeared in the numerator 
of Moran’s Coefficient. A subset of eigenvectors was then selected 
with a stepwise regression procedure. Because

( ) ( )' ' '11 / 11 /I n C I n E E− − = Λ , where E was an n-by-n matrix 
of eigenvectors and Λ  was an  n-by-n  diagonal matrix of the 
corresponding eigenvalues, the resulting time series, sampled, sig-
nature, oncological-related capture point model specification was 
provided by: ^ ^T E kλ µ ϕ ε= + ∗ +  (2.4) where µ   the 
scalar mean of Y, Ek was an  n-by-k matrix containing the subset 
of k n<<   eigenvectors This eigenfunction process was carefully 
chosen with a stepwise regression technique, and β  was a k-by-1 
vector of regression coefficients. A number of the eigenvectors were 
temporally parsimoniously extractable from ( ) ( )' '11 11 /I C I n− −
, which were affiliated with geographic patterns of the sampled, 
county-level, zip code stratifiable, georeferenced, LULC and socio-
demographic, capture point covariates portraying a negligible de-
gree of non-zero autocorrelation.

Consequently, only the  n  eigenvectors were of interest for 
generating a candidate set for conducting a stepwise regression 
procedure. We included the temporally eigen-decomposed, inter-
polated, capture point eigenvectors as stratified, signatured covari-
ates in the forecast model. We selected these relevant covariates for 
inclusion into the model using a stepwise procedure, which also 
enabled an eigenized filter to be accountable for conventional sta-
tistical non-Gaussian noisy signatures generated from violations 
of regression assumptions in a GLM time signature specification. 
This equation was written in PySAL, where the 1-by-1 vector of fit-
ted, county-level, interpolated, estimator determinant, stratifiable, 
county-level, capture point signature Y, while X was delineated as 
a matrix of a time series, dependent, oncological-related, prognos-
ticated, georeferenceable zip code hot/cold spot, coupled with vec-
tor  1. PySAL determined that the sample, vulnerability-based, ei-
gen-temporal filtered hot/cold spot parameter fit was *y X β ε= +  
(i.e., a standard regression equation). The primary function of the 
model generation was for detecting time-sensitive, non-Gaussian, 
chaotic, zero autocorrelated disturbances *ε  in the interpolated, 
zip code, stratified, capture point, signature sampled estimator de-
terminants due to violations of regression assumptions.

The objective of the time series vulnerability analyses was to 
generate latent explanatory Gaussian coefficients from the time 
series sampled, regressable, capture point, LULC, and sociodemo-
graphic, interpolated estimator determinants that were temporally 
eigen-decomposable into a white-noise component, ,ε  and a set of 
unspecified model prognosticated outputs that had the structure 

.


∗ε=

ε+γ+= EXBy  

1 1

1

1

n

m m

n

y y
x x

J
y y
x x

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
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White noise is a univariate or multivariate discrete-time sto-
chastic process whose terms are i.d.d with a zero mean. We em-
ployed PySAL to generate similarity measures. Here we employed 
the queen contiguity as:

wq = lp.weights.Queen.from_dataframe(df)

wq.transform = ‘r’

The temporal, regressed, interpolated, signature, LULC, and 
sociodemographic interpolated, eigenized weights revealed previ-
ously unknown georeferenced, zip code, stratifiable capture point, 
hot and cold neighborhoods  i  and  j. The forecasts  indicated that 
the time series sampled estimator determinants were geographi-
cally dissimilar. We measured attribute dissimilarity. The temporal 
lag was derivable in PySAL using [ ]' _ 'y df median pri=  as:

ylag = lp.weights.lag_spatial(wq, y)

ylag

import mapclassify as mc

ylagq5 = mc.Quantiles(ylag, k=5)

f, ax = plt.subplots(1, figsize=(9, 9))

df.assign(cl=ylagq5.yb).plot(column=’cl’, categorical=True, 
\

k=5, cmap=’GnBu’, linewidth=0.1, ax=ax, \

edgecolor=’white’, legend=True)

f. ax.set_axis_off()

plt.title(“Spatial Lag Median Price (Quintiles)”)

plt.show()

The forecast-oriented, oncological-related, quantile, sampled, 
capture point, county, zip code signature map for the time lag 
tended to enhance the empirical sampled estimator determinant, 
integer value similarity in eigenvector eigen-geospace. [i.e., a local 
smoother]. However, we still had the challenge of visually associat-
ing the interpolated, signature, capture point, georeferenced hot/
cold spot sampled integer values of the stratified, estimator deter-
minants in a county neighborhood with the value of the time lag of 
the sampled values for the focal unit [i.e., georeferenced zip code 
hot spot]. The latter was a weighted, capture point, sentinel site, 
estimator determinant in the focal unit’s neighborhood.

To complement the precise visualization of the time series re-
gression associations, we employed formal statistical measures of 
zero and non-zero, non-Gaussian, residual temporal autocorrela-
tion. We began with a simple case where the prognosticative, onco-
logical-related, time signatured, LULC, or sociodemographic sam-
pled variable under consideration was binary. This was useful to 
understand the logic of the eigen-autocorrelation uncertainty-ori-
ented regression tests for quantifying the stratified, capture point, 
non-Gaussian time series, georeferenced, empirical sampled, coun-
ty, zip code stratified, estimator determinant coefficients due to vi-
olations of regression assumptions in the capture point, signature 
prognosticative model. So even though our attribute, signatured, 

interpolated, capture point, oncological-related estimator deter-
minants were continuously valued, we converted them to a binary 
case to illustrate the key concepts using: 

y.me yb = y > y.median()

sum(yb)dian()

We had multiple, county-level, neighborhoods listed within the 
potential, aggregation/non-aggregation-oriented, stratifiable, time 
series, dependent, LULC and sociodemographic, signature capture 
points. The regression reflected a portion of the interpolated, onco-
logical-related, time series, estimator determinants above the me-
dian and the remainder below the median:

 yb = y > y.median()

labels = [“0 Low”, “1 High”]

yb = [labels[i] for i in 1*yb] 

df[‘yb’] = yb

The temporal distribution of the binary variable immediately 
raised questions about the juxtaposition of the “county-level, geo-
referenced, hot spot” and “cold spot” time series, dependent, cap-
ture point, signature interpolated, zip code stratified areas, which 
we adjusted for in the model residual forecasts using:

fig, ax = plt.subplots(figsize=(12,10), subplot_kw={‘as-
pect’:’equal’})

df.plot(column=’yb’, cmap=’binary’, edgecolor=’grey’, leg-
end=True, ax=ax)

A join existed for each interpolated time series neighboring 
pair of country, zip code, sampled, capture point, and estimator de-
terminants. The joins were reflected as binary weighted objects. We 
employed the esda package to carry out a join count analysis using:

import esda 

yb = 1 * (y > y.median()) # convert back to binary

wq = lp.weights.Queen.from_dataframe(df)

wq.transform = ‘b’

np.random.seed(12345)

jc = esda.join_counts. Join_Counts(yb, wq)

The resulting aggregation/non-aggregation-oriented, sentinel 
site, interpolated, estimator determinant, and stratified capture 
points were quantifiable based on the unique number of joins in 
the weights object. Thereafter, PySAL employed random temporal 
permutations of the stratified, LULC, and sociodemographic attri-
bute values to generate a realization under the null of  complete 
temporal randomness. A random permutation is a sequence where 
any order of its items is equally likely to be at random; that is, it is 
a permutation-valued random variable of a set of objects. This was 
repeated a large number of times (999 default) to construct a ref-
erence distribution in PySAL. To evaluate the statistical significance 
of the capture point, county-level, zip code signatured, causation 
covariate sampled, integer, integer-valued counts. The average 
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number of potentials, aggregation-oriented, time series dependent 
polygons joined from the synthetic realizations was labelled as an 
oncological-related, county, zip code, stratifiable, georeferenceable, 
regression forecasted. hot spot capture point in = import seaborn 
as sbn employing:

sbn.kdeplot(jc.sim_bb, shade=True)

plt.vlines(jc.bb, 0, .12, color=’r’)

plt.vlines(jc.mean_bb, 0,.12)

plt.xlabel(‘BB Counts’)inanount.

A pseudo p-value summarized the regressed, capture point, and 
interpolated signature counts. Since this was below conventional 
significance levels, we rejected the null of complete randomness in 
favor of non-Gaussian zero autocorrelation due to violations of re-
gression assumptions in time. First, we transformed our zip code 
regression weights to be row-standardized, from a current binary 
state: wq. Transform ' 'r=  and [ ]' _ 'y df median pri=  in PySAL. 
We again tested for local clustering time series dependency in the 
interpolated, oncological, signature forecast model employing per-
mutations in the regressed capture point model renderings. We 
employed conditional random temporal permutations (different 
distributions for each interpolated, georeferenced county, zip code 
stratified, hot/cold spot location). We distinguished the specific 
type of local time series dependent association reflected in the four 
quadrants of the Moran Scatterplot.

Another AR, time series, county, zip code, stratified, signature, 
hot/cold spot capture point model was constructed employing an 
explanatory variable Y as a function of a nearby regressor in the 
prognosticative model. A county, sentinel site, estimator determi-
nant, sampled value (i.e., an AR response), and the residual of Y 
were treated as a function of a nearby sampled Y residual with a 
temporal error specification. Subsequently, we employed a Hessian 
matrix for temporally quantifying the georeferenced, capture point, 
hot/cold spot, stratified, LULC, and sociodemographic interpolat-
ed signatures eigenvectors. In mathematics, the Hessian matrix is a 
square matrix of second-order partial derivatives of a scalar-valued 
function, or scalar field. In this experiment, the Hessian matrix of 
second-order partial derivatives of a multivariable function was us-
able to invasively analyze the temporal error of a time series sam-
pled, georeferenced, county-level, capture point, zip code stratified, 
hot/cold spot regressed functional surface. Below is the code for 
the Hessian we employed:

def hessianComp (func, x0, epsilon=1.e-5):

f1 = scipy.optimize.approx_fprime( x0, func, epsilon=epsi-
lon) 

# Allocate space for the Hessian

n = x0.shape[0]

hessian = np.zeros ((n, n))

# The next loop fills in the matrix

xx = x0

for j in range(n):

xx0 = xx[j] # Store old value

xx[j] = xx0 + epsilon # Perturb with finite difference

# Recalculate the partial derivatives for this new point

f2 = scipy.optimize.approx_fprime(xx, func, epsilon=epsi-
lon) 

 hessian[: , j] = (f2 - f1)/epsilon # scale...

 xx[j] = xx0 # Restore initial value of x0 

 return hessian 

We subsequently employed a Jacobian to search for zeros, and 
the Hessian for finding extrema in the stratified, non-Gaussian, ei-
gen-autocorrelated, sampled, LULC and sociodemographic, strati-
fied, time series, oncological-related, interpolated, zip code, sig-
nature eigenvectors. The quasi-Newton methods are amongst the 
most widely used methods for nonlinear optimization in regres-
sion-oriented, epidemiological modeling. Subsequently, the Taylor 
series of a function ( )f x  about a scaled-up, capture point, tempo-
ral stratified, georeferenced, hot/cold spot, zip code-level capture 
point a up to order n was found using Series { }, , ,f x a n   . We 
coded the Taylor Series by writing out each temporal, dependent, 
capture point, county, zip code stratifiable model term individually. 
We combined these terms in a line of Python code. The code below 
calculated the sum of the first five terms of the Taylor Series expan-
sion of  ^e x , where  2x = . Note, the math module needed to be 
imported before math. factorial () could be employed as:

import math

x = 2

e_to_2  =  x**0/math.factorial(0)  +  x**1/math.factori-
al(1) + x**2/math.factorial(2) +

x**3/math.factorial(3) + x**4/math.factorial(4)

print(e_to_2) 

We expanded the exponential in the Taylor series about s=∞, 
to attain the inverse Laplace transforms terms to determine if the 
sampled, oncological-related, georeferenced, county, zip code sam-
pled time series was uniformly convergent. A Laplace transform of 
the temporally eigen-autocorrelation function of a stochastic pro-
cess was constructed to provide information about the process’s 
frequency content.  Specifically, for the Laplace transform, its ei-
gen-autocorrelation function was evaluated along the imaginary 
axis (i.e., with a complex variable s jω= ), to quantify the wide-
sense non-stationary processes proportional to the time signatured, 
capture point, interpolated, hot/cold spot estimator determinants. 
We decomposed the Laplace transform of an eigen-autocorrelation 
function generated from a stochastic time series process using the 
Wiener-Kolmogorov whitening procedure.

The Wiener-Kolmogorov whitening procedure was constructed 
in Scipy to quantify time error in the stratified, county, zip code, 
oncological-related, signatured, forecast model, which was driven 
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by white noise w(t). We assumed the sampled, georeferenced, on-
cological-related, time series data had structure, hence we assumed 
that a specialized eigen-filtered regression model output could be 
generated by smoothing the sampled time-sensitive data. The cor-
relation function in the model was subsequently computed as 

( ) ( ){ } ( )( )
( ) ( ) ( )

22 j
jR s L r

s a s a

H s H s W s

ασ
τ

−
= =

− +

= −

where
( ) ( )1/H s s α= +

and
( ) 22 .jW s ασ=

We implemented joint denoising of the interpolated, capture 
point, county, and zip code signatures distorted with Gaussian or 
time noise as described in [31]. The code employed the external 
packages, which were installed with packagelist.txt. We employed 
the joint denoising based on deep learning techniques for the ap-
proximation of learnable prior information integrated into the 
Wiener-Kolmogorov filter. Wiener filter with learnable identical 
kernels (WF-K) deconvoluted the stratified, time series interpolat-
ed signature capture point sampled county, zip code oncological-re-
lated estimator determinants. Data for training and validation was 
available  via  the  following  link:  https://drive.google.com/drive/
folders/1oPFbYBHv R4sgtnQwrEun1V5EDbKQa1H?usp=sharing

The Jacobian matrix entries were functions of ,,,1 nxx   
which were generatable by ( )nF xxJ ,,1 

 and ( )
( ) .,,

,,
1
1

n
m

xx
FF





∂
∂  

Subsequently, we employed the Harvard  auto grad  library, 
where  grad  and  Jacobian  took a regression function as their 
argument:

x = np. array ([5,3], dtype=float)

def cost(x):

return x [0]**2 / x [1] - np.log(x[1])

gradient_covariate = grad(cost)

jacobian_covariate = jacobian(cost)

gradient_covariate(x)

jacobian_covaraiet(np. array([x,x,x]))

We employed the Jacobian method available for matrices 
in SymPy:

from sympy import sin, cos, Matrix

from sympy.abc import rho, phi

X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])

Y = Matrix([rho, phi])

X.jacobian(Y)

The joint probability of the sampled oncological-related, cap-
ture point signature interpolated data was 

( ) ( ) ( );|,
1

1 θ=θ=θ ∏
=

i
n

i
n xpxxpp X

 whereby, 

( ) ( )θ=αθ XX pp ,  and ( ) ( )θ=αθ |,| ii xpxp  was condi-
tionally independent of the hyperparameters. The inference was 
used to determine the posterior distribution of the parameter 
( )αθ ,Xp  which revealed

( ) ( )
( )α

αθ
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,,, X
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Next, we estimated the time signature capture point, LULC, and 
sociodemographic, interpolated, capture point estimator deter-
minants by employing a Laplace quadrature. The recently devel-
oped quadrature by expansion (QBX) technique in Python accurately 
evaluated the signature model layer potentials with singular, 
hypersingular kernel in the integral equation reformulations using 
a partial differential equation. The second-order eigenfunction ei-
gen-decomposition technique attempted to remove the inherent, 
latent, zero autocorrelation, and other propagation non-Gaussian 
bias due to violations of regression assumptions in time in the geo-
referenced, sentinel site, uncertainty-oriented, empirical forecast 
model by introducing appropriate scaled-up, estimator, determinant 
surrogate variants. We plotted the latent eigen-Bayesian, eigen-al-
gorithmic Markovian, stratified, temporally heteroscedastic, aggre-
gation/non-aggregation-oriented, county-level signature, interpo-
lated, LULC, and sociodemiographic variables with  ()plot z : model.
plot_z(figsize= We plotted  the fit with  ()plot fit : The plot predic-
tions  of  future  conditional  volatility with  _ ()plot predict :mod-
el.plot_predict ( )100h = . We viewed how well we predicted using 
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in-sample rolling prediction with  _ _ ()plot predict is : model.
plot_predict

The eigen Bayesian semiparametric portion of the capture point, 
non-frequentist, forecast-oriented, oncological modelling approach 
considered  ( ),ϖΨ  as a random variable, was characterizable by a 
prior density. This was denotable by  ( ),p ϖΨ . The prior was speci-
fied with the help of hyperparameters, which were initially assumed 
to be known and constant. Subsequently, by coupling the likelihood 
function of the interpolated, georeferenced, zip code, capture point, 
stratified, oncological, prognosticative, model, scalable signature 
parameters with the prior density. We parsimoniously trans-
formed the probability posterior density 

( ),p yϖΨ
 as follows: 

( ) ( ) ( ) ( ) ( ), , , , ,p y L y p L y p d dϖ ϖ ϖ ϖ ϖ ϖΨ = Ψ Ψ Ψ Ψ Ψ∫ . In 
so doing, the posterior was then a quantitative, probabilistic de-
scription of the heteroscedastic and or multicollinear, uncertain-
ty-oriented capture point, time, signatured model parameters in 
the georeferenced, zip code-level, sampled oncological data. We 
followed in the choice of the prior distribution on the degrees of 
freedom parameter in the temporal, sampled, capture point, ei-
gen-Bayesian prognosticative, county, zip code signature forecast 
non-frequentist model.

The distribution was quantifiable using an exponential tem-
poral translated, stratifiable, estimator determinant where 

0λ >   and  ( ) ( ) { }{}2 exp 1fp v v vδ λ λ δ δ≥ = − − >   . For the inter-
polated, signatured, LULC, and sociodemographic capture point 
eigen-autocorrelated integer values of λ , the mass of the prior 
was concentrated in each county, neighborhood of  δ, and then a 
constraint on the degrees of freedom was imposed. Normality of 
the errors is assumed when δ  is chosen. The joint prior distribu-
tion was subsequently formed by assuming prior independence 
between the scaled-up, stratified, signature parameters, i.e., 
( ) ( ) ( ) ( ) ( ),p p p p v p vϖ α β ϖΨ . The recursive nature of a vari-

ance equation implied that the joint posterior in the eigen-Bayes-
ian, semiparametric, oncological, county, zip code, stratifiable fore-
cast model and the full conditional densities could not be expressed 
in closed form. There existed no (conjugate) prior that could reme-
dy this property. Therefore, we needed to rely on a more elaborate 
Monte Carlo Markov chain [MCMC] simulation strategy to approx-
imate the posterior density of the oncological, signature, capture 
point prognosticative model.

The idea of MCMC sampling was first introduced by [32] and was 
subsequently generalized by Hastings [33]. In this experiment the 
sampling strategy relied on the construction of a Markovian chain 
with realizations  [ ] [ ]( ) [ ] [ ]( ). ., 0 , 0 ,..., , ,...i e j jϖ ϖ Ψ Ψ    to optimally 
iterate the georeferenced, sampled, capture point, county, zip 
code, stratifiable, time series, regression parameter space. Under 
appropriate regularity conditions, non-asymptotic results can be 
guaranteed if j  tends to non-infinity,  whilst [ ] [ ]( ),j jϖΨ   tends in 
distribution to a random variable. Hence, after discarding the first 
draws from the Markovian, non-frequentist, semiparametric eigen 
Bayesian iteration, the realized discrete values of the chain were 
used to make inferences about the temporal asymptoticalness in 
the joint posterior in the interpolated signatured, LULC, and socio-

demographic, l prognosticative capture point, oncological model 
estimator determinants.

A generalized autoregressive conditionally heteroscedastic 
(GARCH) model was subsequently constructed in Python for ex-
plaining the variance of a sampled, interpolated, zip code, georefer-
enced, capture point, time series sensitive, “eigen-Bayesianized” ex-
planatory, semi-parametrized, non-frequentist, Markovian model, 
stratified estimator determinants to determine optimal prediction 
of volatility due to violations of regression assumption temporally. 
The GARCH method in PyPI provides a way to model a change in 
variance in a time series that is time-dependent, such as increasing 
or decreasing volatility. A time stochastic process X GARCH ( ),p q  
process model was constructed. The GARCH model had the prop-
erties as follows. Xt [time signatures], which is quantifiable for 
heteroscedastic asymptoticalness in the GARCH ( ),p q  process. We 
noted that 1 1 1i p i j q jα β= + = <∑ ∑ , held if Xt2 followed an autore-
gressive, signatured, capture point zip code interpolated, LULC, and 
or sociodemographic, signature estimator determinant ( ),m q  mod-
el. We were able to establish temporal variance and independence 
using

( )2 1 2 1Xt i m i i Xt i t j q j tω α β η β η= + = + − + − = −∑ ∑

where  0iα = for  ,i p jβ> = ( ), max ,j q m p q> =  and 
( )2 2 1 2t t Xtη σ ε= −  was white noise.  ( ) ( )0, 0E X E Xt hXt= + = for any

( ) (0, 1 1h Var Xt i m i iω α β≠ = − = +∑ was  the  condition-
al variance of X, when ( ) ( )1 0, 2 2 1E Xt Ft t Var Xt Ftσ− = = − . Equa-
tion (2.1) reflected the fat tails and volatility clustering in the onco-
logical, prognosticative capture point mode.

Thereafter, we let ty ​ be a time series sampled, georeference-
able, capture point oncological-related, county, zip code, sampled, 
estimator determinant in a GARCH model with a mean equation: 

t ty µ= +∈  where t∈  was a white noise process with variance 2
t

σ
. The conditional variance was then modeled as: 

0 1 2
2 2 2 2... ,

1 2 qt t t t q
σ α α α α= + ∈ + ∈ + + ∈

− − −  
where:

a.	 0 0α >  Ensured a positive variance,

b.	 0iα ≥  for 0i > , ensuring a non-negative variance,

c.	 q represented the number of stratifiable, lagged, squared 
residual terms in the signature interpolated, data capture points.

Our assumption was that a large past squared error term 
2

t i
 ∈ − 

 increases current time series volatility in an oncological 
signature, prognosticative, capture point model. An oncological-re-
lated, prognosticative ARCH model was also developed in PyPI to 
solve problems related to the propagation of latent temporal het-
eroscedasticity in the empirical sampled, georeferenced, capture 
point time series. Our assumption was that the model would also 
treat temporal heteroscedasticity (data in which the variances of 
the error terms are not homogeneous) as a variance to be modeled 
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in the time-sensitive, signature, capture point, and oncological-re-
lated forecast analyses. Consequently, we assumed not only that 
the deficiencies of least squares would be rectifiable regardless of 
time error due to the violations of regression assumptions. Howev-
er, predictions generated for the variance of each uncertainty term 
would be the precise mathematical representation of the sampled, 
non-Gaussian, error structures (i.e., white noise) embedded in the 
capture point, county, zip code, oncological-related, interpolated, 
signature, model estimator determinant.

An ARCH ( )p capture point, signature model with order  p I≥  
was generated, which revealed a form

{ 2 1 12 2 ...Xt t t t Xt Xt pXt pσ ε σ ω α α α= = + − + + + −  [2.2] where 
0, 0iω α+ ≥   and  0pα >   were constants.  t iidε   (0,1) and 

tε  was independent of  { }; 1Xk k t≤ − . A stochastic process of 
an ARCH(p) process satisfied Eq. (2.6). By definition 1,  2tσ  and  tσ  
were independent of  tε . We assumed that t Nε   (0,1). We also 
assumed that  |tε followed a standardized (skew) Student’s T dis-
tribution. We also assumed that a generalized temporal error dis-
tribution could capture more time signatured features of the onco-
logical-related, interpolated, georeferenced, county-level, zip code, 
stratified capture points due to violations of regression assump-
tions in time. We assumed that ARCH models were an alternative 
model for allowing a stratifiable, zip code, signature, eigen-auto-
correlated stratified, estimator determinant derived from a coun-
ty-level, oncological-related capture point, p, to be approximated in 
a likelihood-based, forecast-oriented, signature scalable model. In 
this experiment, the model driver was the usage of past sampled, 
capture point, LULC, and sociodemographic stratified, county, zip 
code hot/cold spot temporal residuals.

These lagged squared residuals were the ARCH terms. We ex-
tended the model by including temporal lagged conditional vola-
tility terms, creating a stratifiable, capture point county, zip code 
hot/cold spot, prognosticative model. Amongst our final steps in 
the methodology of this experiment was using a semiparametric 
eigen-Bayesian time–series, dependent, uncertainty-oriented prog-
nosticative, GARCH/ARCH county-level, oncological-related estima-
tor determinant, risk model using a covariance matrix. To specify 
all non-Gaussian time-series related uncertainties in the capture 
point, vulnerability georeferenced model output, we used the mul-
tivariate normal distribution, which was accepted as an array rep-
resenting a covariance matrix using the following code:

from scipy import stats as:

import numpy as np

d = [1, 2, 3]

A = np.diag(d) # a diagonal covariance matrix

x = [4, -2, 5] # a point of interest

dist = stats.multivariate_normal(mean=[0, 0, 0], cov=A)

dist.pdf(x)

4.9595685102808205e-08

The calculations were performed in a very generic way that 
did not take advantage of any special properties of the Markovian, 
non-frequentist, eigen-Bayesian semiparametric, uncertainty-ori-
ented, GARCH/ARCH covariance matrix. Because our covariance 
matrix was diagonal, we employed “Covariance.from_diagonal”  to 
create an object representing the covariance matrix and  a multi-
variate normal.  We employed this methodology to compute the 
probability density function more efficiently. Log of the pseudo-de-
terminant of the covariance matrix was generated thereafter using 
log_pdet:

cov = stats.Covariance.from_diagonal(d)

dist = stats.multivariate_normal(mean=[0, 0, 0], cov=cov)

dist.pdf(x)

4.9595685102808205e-08

If an estimated iteratively, interpolatable, time-series, depen-
dent, aggregation/non-aggregation-oriented, semi-parameteriz-
able, Markovian, non-frequentist, capture point, GARCH/ARCH, 
time series, estimator determinant, vulnerability-oriented model 
output is mis-specified, every forecasted value will be biased and 
inconsistent. In regression-based, vulnerability-oriented, signa-
ture, capture point, empirical, prognosticative error-in-variable 
models, the term misspecification covers a broad range of prognos-
ticative modeling uncertainties, including discretizing, sampled, 
continuous, prognosticative non-Gaussian variables. We consid-
ered two different projection matrices, ( ) ( ) TTIM 1111

1
1

−
−≡  and 

( ) ( ) .
1 TT

X XXXXIM
−

−≡ for optimally, heuristically, optimized the 
georeferenced time series, sampled, oncological-related, estimator 
determinant, stratified, capture point data. The projection matrix 

( )1M  is a special case of the more general projection matrix ( )XM .

The general projection matrix ( )XM  in the Markovian ei-
gen-Bayesian semi-parametric, non-frequentist, Markovian 
GARCH/ARCH model included a constant unity vector 1 and 
additional, stratifiable time series regressors. An eigen-decom-
posed estimator determinant dataset of county, zip code strati-
fied, LULC, and sociodemographic, non-Gaussian eigenfunction 
eigenvectors { }SARnee ,,1   was subsequently extracted from 
the regressed quadratic { } ( ) ( ) ( ) ,2

1,,1 



 +≡ X

T
XSARn MVVMevecee 

(2.7), which was designed orthogonal to the exogenous vari-
able X. The projection matrix imposed this constraint. In con-
trast, the set of eigenvectors { }Lagnee ,,1   was extracted from
{ } ( ) ( ) ( ) .2

1,, 111 



 +≡ MVVMevecee T

Lagn
(2.8).

These two different sets of temporally dependent, eigenfunc-
tion eigenvectors were employed to establish a basis for construct-
ing an unbiased, regression-based, non-skew, homoscedastic, 
non-multicollinear, non-zero autocorrelatable, capture point, prog-
nosticative, Gaussian distribution. We generated a forecast-orient-
ed, signature Markovian eigen-Bayesian semi-parametric, non-fre-
quentist, Markovian GARCH/ARCH model. Both expressions were 
solely definable in terms of the potentially eigen-filterable, georef-
erenceable, temporal, sentinel site, county-level information in the 
stratified, zip code, empirical sampled, georeferenced, semi-param-
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eterized, LULC, and sociodemographic, non-frequentist, signature, 
interpolated, capture point, estimator determinant dataset.

Results

We scaled up (i.e., interpolated) sampled, 10m resolution, Sen-
tinel 2, sensed, georeferenced, signature, capture point sampled in 
zip code 33647 in Hillsborough County. We input the sampled time 
series, oncological-related, stratified, capture point, LULC, and so-
ciodemographic time series data into the non-stochastic interpo-
lator. This technique, contrary to conventional existing data-driven 
interpolation approaches for oncological data modelling in the lit-
erature, is based on sparsity, prediction filters, and rank-reduction, 
which can predict the value of capture points at non-sampled loca-
tions by exploiting the statistics of the recorded empirical sampled 
estimator determinants. Local mean and variance were computed 
to define intervals of the global conditional distribution function 
where the georeferenced, signature capture point, county, zip code, 
and stratified oncological-related values in Scipy were non-stochas-
tically non-bilinear simulated.

The time series, LULC, and sociodemographic parameters de-
fined subsets of experimental data from which the mean and vari-
ance of the county, zip codes which were calculated by local var-
iogram models. We obtained from a local azimuth estimation in 
the t-x-y domain. The empirical sampled, time series, LULC, and 
sociodemographic data interpolation technique was applied to 
generate synthetic and real 2D and 3D estimator determinants in 
both post- and pre-stack domains. We employed the interpolated, 
empirical, baseline georeferenced dataset to generate a forecast 
map of county-level georeferenceable locations of potential leuke-
mia patients throughout Florida at the zip code level. The interpo-
lation dataset contained three years of sampled, signature capture 
point, time series dependent estimator determinants. We tempo-
rally eigen-decomposed the interpolated, georeferenced, zip code, 
stratified, LULC, and sociodemographic capture points into trend, 
a structured random component (i.e., a stochastic signal), and ran-
dom noise employing a second-order eigenfunction eigenvalue de-
composition in Numpy.

Our aim was to separate structured, random components from 
both trend and random noise associated with the interpolated, sig-
nature, capture point, and regressed count data. In so doing, we 
assumed we could achieve sounder statistical time series, oncolog-
ical-related, signature, capture point, and prognosticative model-
ing inference. We also assumed such an interpolation would be a 
useful visualization of a georeferenced, capture point, hot spot of 
potential leukemia patient households at the county, zip code level 
for implementation of a social media messaging platform using an 
infused AI-ML smartphone app. We generated latent, eigen-auto-
correlated temporal indices employing the stratified estimator de-
terminants using Moran’s indices ( )I  in PySAL. Moran’s I employed 

( ) ( )( ) ( )*/ / 2,N M wij xi x xi x xi x∑∑ − − ∑ −  where N was the 
number of Floridian county zip code hot/cold spot units indexed by 
i and j. Here, W was the sum of all wij x : The variables of interest 
(i.e., empirical, time series, capture point, interpolated, signatured, 
LULC, and sociodemographic, stratified capture points) were delin-

eated as x, while wij  was the matrix of the sampled, oncological-re-
lated, estimator determinant regression weights.

The upper and lower bounds for our eigenvalue eigen-decom-
position, capture point, prognosticative model were quantifiable 
employing Moran’s I, which in this experiment was provided by 

( )max /1 1Tn Wλ  and  ( )min /1 1Tn Wλ , where  maxλ  and  minλ  were the 
extreme eigenvalues of HWHΩ = . The sentinel site, capture point, 
county, zip code, eigen-decomposed eigenvectors ,ie were subse-
quently mapped in oscanpy. metrics.morans into an underlying 
discrete tessellation. The model revealed each georeferenced, fore-
casted, county-level, zip code, hot and cold spot, which exhibited a 
distinctive topographic pattern ranging from positive spatial auto-
correlation [PSA] (i.e., stratified similar eigen-values of log-trans-
formed, LULC, and or sociodemographic, capture point, sampled 
time series data) ( )IEi >λ  to negative spatial autocorrelation 
[NSA] (i.e., dissimilar log-values clustering in eigen-geospace) for 

( ).IEi >λ  Each stratified, county-level, zip code, georeferenced, in-
terpolated, eigen-decomposed time series estimator determinacies 
was mapped where ( )IE  was the expected value of Moran’s I under 
the assumption of (a) temporal independence and (b) as outputs 
from related projection matrices ( )1M  or ( ),XM  respectively.

We noted that the associated, eigen-decomposed, Moran’s I val-
ue of each temporally sampled eigen-filtered precisely forecasted 
georeferenceable, county, zip code, hot and cold spot, capture point 
locations throughout Florida using the non-stochastically interpo-
lated LULC and sociodemographic, signature capture point eigen-
vectors. We noted in the model summary diagnostics that each geo-
referenceable, time-dependent eigen-decomposed eigenvector was 
equal to its associated eigenvalue ( )[ ]i

TT
ii eVVe +=λ ( ),2 i

T
i ee  as V 

was precisely scalable to satisfy ( )[ ] .211 nVV TT =+ We employed 
Pearson’s correlation coefficient in PySAL for summarizing the au-
tocovariance terms, which were quantifiable between the interpo-
lated, county-level, capture point, signatured, stratified estimator 
determinants. We defined the covariance of the georeferenced, au-
tocorrelated estimator determinants by dividing the product of the 
variable standard deviations employing

( ) [( ) ( )] .,cov
,

YX
YX

YX
YX

YXEYX
σσ

µ−µ−
=

σσ
=ρ

The formula defined the capture point, time series, dependent, 
regression correlation coefficients of each autoregressively prog-
nosticated, county-level, zip code stratified, georeferenced, signa-
ture capture point, interpolated hot/cold spot in Florida based on 
the stratified LULC and sociodemographic, estimator determinants 
sampled. For example, during the validation exercise, we were able 
to ascertain that many georeferenced eigen-autocorrelated, county, 
zip code, stratified hot spots of potential leukemia patients were 
old age retirement facilities throughout the State (Figure 2). The 
eigenfunction second-order eigen-decomposition temporal filter-
ing approach added a minimally sufficient set of signatured, cap-
ture point, georeferenced, stratified, LULC, and sociodemographic, 
estimator determinant eigenvectors as proxy variables to the set of 
empirical georeferenced zip code, stratified, county-level, sentinel 
site, signature capture points. The evidential model prognostica-
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tors induced mutual independence in the sampled empirical esti-
mator determinants in eigenvector eigen-geospace. The estimator 
determinants in scanpy revealed the time series-dependent, pre-

dictor variable clustering tendencies at the county zip code level 
throughout Florida.

The temporal pattern in the eigenvectors exhibited only positive 
local eigen-autocorrelation and vice versa for negative eigen-auto-
correlation. The interpolated, time-sensitive, stratified, hot/cold 
spot, signature, scalable, autocorrelated, temporal, Gaussian, onco-
logical-related explanators ie  and je  within each set of eigenvec-
tors were mutually non-zero, which was revealed using symmetry 
transformation [i.e., ( )TVV +2

1 ]. This was expressible employing a 
quadratic. The quadratic form representation of the eigen-temporal 
autocorrelation index [i.e., Moran’s I] captured the non-zero auto-
correlation in the time series sampled, oncological-related hot/cold 
spots generated by the authors. The eigen-temporal filtered eigen-
function eigenvectors derived from the georeferenced, stratified, 
zip code, sampled, hot/cold spot, capture point estimator determi-
nants were eigen-orthogonal but only to the constant unity vector 
1 in X. Eigenvectors corresponding to different eigenvalues will be 
orthogonal if the matrix is symmetric, i.e., real spectral theorem.

The second-order eigenfunction eigen-decomposition al-
lowed linking each collection of the eigenvectors to its specif-
ic, georeferenced county, zip code, stratified, sampled capture 
point, by letting SARE  be a matrix whose vectors were subsets 
of { } .,,1 SARnee 

 A higher-order, stratified, AR, capture point 
time series model was subsequently constructed in PySAL from the 
georeferenced, time series, signature, sampled dataset of county, 
zip code-level stratified interpolated regressors. The model found 

that the lag orders were mis-specified in the oncological sampled, 
interpolated time sampled data due to asymptoticness. This viola-
tion of the regression assumption in time in the forecasted LULC 
and sociodemographic, georeferenced, hot/cold spot oncological 
data we assumed would be a part of the misspecification bias in the 
asymptotical sampled model estimator determinant dataset, which 
was subsequently correctly specified using a non-asymptotic order. 
A non-fixed-effect formula did not remain the same under non-sta-
tionarity.

A linearized combination of the non-asymptotical, time-sensi-
tive, regression coefficient subset was approximated by employ-
ing the misspecification term of the capture point, interpolated, 
non-asymptotical, time series, signatured interpolated, LULC, and 
sociodemographic, estimator determinant model output, which in 
this experiment was expressible as ( ).

1
ερ≈γ ∑

∞

=

kk

k
SAR VE (3.1). The lin-

earized combination γSARE  did not remain eigen-orthogonal to the 
sampled, non-asymptotical, georeferenced, signatured, time series, 
dependent, exogeneous variables X and the estimated stratifiable 
county-level, zip code, hot/cold spot capture points since β̂  was bi-
ased. Furthermore, as a property of the OLS estimator, the approx-
imated term γSARE  was also not eigen-orthogonal to the capture 
point time series, model residuals .ε̂  The model ε+γ+β= ˆˆˆ SAREXy
[3.2] eigen-decomposed the georeferenced, non-zero, autocorrelat-
ed signature, stratified, capture point, LULC, and sociodemographic, 

Red (Hot 90%-99%): Hot spot clusters - areas with statistically significant high concentrations of potential leukemia patients.

Blue (Cold 90%-99%): Cold spot clusters - areas with statistically significant low concentrations of potential leukemia patients.

White (Not Significant): Areas where the clustering is not statistically significant.

Grey: Areas with no data or not included in the analysis.

Figure 2: Capture point, time series, eigen-decomposed correlation coefficients of each prognosticated, county-level, forecasted, county, zip 
code hot/cold spot in Florida.
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stratified, prognosticated, signatured variables y into a systematic 
trend component, a stochastic signal component, and white-noise 
residuals.

The term γ̂SARE  removed error variance inflation in the MSE 
term attributable to potential, latent, time series, heterogeneous 
erroneous variance embedded in the empirical sampled, georefer-
enced, zip code stratified, county, aggregation/non-aggregation-ori-
ented, eigen-temporal filtered interpolated, signatured, capture 
point, non-asymptotical estimator determinants. Subsequently, a 
temporal lag model was constructed employing LagE which was 
a matrix of the sampled, estimator determinant eigen-decomposed 
eigenvectors, which in our forecast oncological model renderings 
were revealed as a subset of { } .,,1 Lagnee 

.The approximation of any 
potential misspecification term was subsequently quantifiable em-
ploying ( ).

0
ε+βρ≈γ ∑

∞

=
XVE kk

k
Lag  Since γLagE  was uncorrelated with 

the interpolated, county-level, stratified, zip code, signatures, X, its 
incorporation into the georeferenced, scaled-up, sentinel site, vul-
nerability-oriented model attempted to correct the temporal bias 
using estimated plain OLS parameters β̂ .

The equation ε+γ+β= ˆˆˆ LagEXy  [3.3] revealed the specific, em-
pirical sampled, eigen-valued capture point, estimator determinant 
variance, which were retrievable from the eigen-decomposition of 
the time lag signatured, LULC, and sociodemographic, stratified, 
capture point model forecast summary diagnostics. We noted that 
the trend and the time-series signals were uncorrelated, and the 
mean square error (MSE) was deflated. The eigen-orthogonal, sig-
natured, eigen-autocorrelated, eigen-spatial filtered, capture point, 
interpolated model output created multiple, sentinel site, georefer-
enceable, county-level, zip-code stratified, hot/cold spot, LULC, and 
sociodemographic, vulnerability-oriented, uncertainty-oriented, 
probabilistic, signature capture point maps. The misspecification 
term in each county stratified model was revealed as ( ) ( ) .exptSTS =  
The interpretive signature, temporally dependent LULC and socio-
demographic capture points, time series, patterns were generated 
from the prognosticated distribution of the stratified, aggregation/
non-aggregation-oriented, regressed estimator determinants.

There was a requirement to describe independent key dimen-
sions of the underlying uncertainty processes in the empirical sam-
pled oncological time series due to violations of regression assump-
tions. We were able to define non-asymptotical, temporal estimator 
determinant patterns in each county zip code model misspecifica-
tion term. We considered a non-stationary random process ( )x t  
in the stratified, capture point, time series, prognosticative, inter-
polated, signatured, oncological-related, model using the Laplace 
transform. We considered a wide-sense-stationary random process 
( )x t .  The  autocorrelation  function was  ( ) ( ) ( ):r t E x t xτ τ− =    . We let
( )S s be the Laplace transform of  ( )r t  in the oncological-related, 

forecast, estimator, and determinant model. We computed ( )S s  as 
( ) ( ) ( )S s E X s X s= ∗   , where  ( )X s  was the Laplace transform of 
( )x t . We did so to determine if non-asymptotical time series zero 

or non-zero autocorrelation occurred in the model residuals. In 
mathematics, the Laplace transform is an integral transform that 
converts a function of a real variable (usually t, in the time domain) 

to a function of a complex variable (in the complex frequency do-
main, also known as the s-domain, or s-plane) [34].

We let ( )S s be the Laplace-transform of ( )r t  in the forecast, 
oncological-related, estimator determinant capture point model 
when ( )S s  was ( ) ( ) ( )S s E X s X s= ∗   and where ( )X s was the 
Laplace transform of 

( )x t
. The Laplace transform of  ( )R τ   was 

provided by: ( ) ( )0 2 cos ,LR s e eσ ατ ωτ= −∞∫ , where a non-zero 
eigen-autocorrelation function was ( ) ( ) ( ):r t E x t xτ τ− =    . Our 
results indicate that the Laplace transform is a powerful tool for 
analyzing time-domain signals and systems. Laplace transform ap-
pears to have potential applications in the field of spatial autocor-
relation analysis of time-sensitive, oncological-related, signatured, 
interpolated, LULC, and sociodemographic, county, zip code strat-
ified, hot and cold spot estimator determinants. A PySAL model 
output subsequently created multiple, regressively forecastable, 
county-level, hot/cold spot, Gaussian, zip-code stratifiable, capture 
point, signature, interpolated, LULC, and sociodemographic, senti-
nel site maps employing the Laplace transform.

There were no time dependent misspecification terms since 
( ) ( ) .exptSTS = Quantification of the stratified, LULC and sociode-

mographic, county, zip code stratified, time, series, hot/cold spot 
capture point patterns were parsimoniously quantifiable from the 
distribution of the georeferenced, non-asymptotical, non-zero au-
tocorrelated, regressed, aggregation/non-aggregation-oriented, 
stratified, estimator determinants which in this experiment was a 
requirement to describe independent key dimensions of the under-
lying uncertainty-oriented temporal processes in the interpolated 
capture point, county-level, zip code signatured data throughout 
Florida. We were able to confirm a non-dependent, linearized, 
non-misspecified, non-zero, time series pattern in the sampled, 
capture point regressors. Python provided an efficient interac-
tive tool for organizing and analyzing the stratified, hot/cold spot, 
non-Gaussian, county, zip code level, signatured interpolated, data 
capture points.

In the georeferenceable, time-series, dependent, vulnerabil-
ity-oriented, county, zip code, hot/cold spot, capture point, prog-
nosticative autoregressive modeling, the AR model furnished an 
alternative specification that was written in terms of a correlation 
matrix in PySAL. Here, the covariance of the potential, aggrega-
tion/non-aggregation-oriented, time series, stratified, georefer-
enced, capture point signature data was a function of the matrix 
( ) ( ) ( ) ( ) ,11 WIWICDICDI ρ−ρ−=ρ−ρ− −− T  where T denotes the 
matrix transpose. The resulting matrix was symmetric and was 
considered a second-order specification, as it included the product 
of two time-sensitive structure matrices ( )..,i.e WWT  This matrix re-
stricted positive, discrete, integer values of the regressed noisy pa-
rameters to the more intuitively interpretable range of .1ˆ0 ≤ρ≤
A Python code was subsequently generated for a time-sensitive 
autoregressive signature model, which was robustly trained using 
statsmodels. tsa.ar_model.

Euclidean distances between the capture point, temporal, 
scaled-up, county, zip code, aggregation/non-aggregation-orient-
ed, stratified LULC, and sociodemographic, estimator determinants 
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were definable in terms of an n-by-n geographic weights matrix, C, 
whose ijc

 values were 1 if the sampled geolocations i and j were 
deemed nearby, and 0 otherwise. Adjusting this matrix by dividing 
each row entry by its row sum subsequently rendered C1, where 1 
was an n-by-1 vector of ones, which converted the regression-based 
matrix to matrix W [i.e., time correlation grid]. The resulting autore-
gressive signature model specification with no sampled, scaled-up, 
signatured, interpolated, capture point, stratified, estimator deter-
minants (i.e., the pure autoregression specification) subsequently 
took on the following form: ( ) ,1 ε+ρ+ρ−µ= WY1Y  where µ  was 
the scalar conditional mean of Y, and ε  was an n-by-1 error vector 
whose LULC or sociodemographic parameters were statistically in-
dependent “normalized” random variates. 

Temporal signature, capture point autoregressive models are 
fit using empirical datasets that contain observations on geograph-
ical areas or on any units with a spatial representation. Approxi-
mate standard errors for the stratifiable, county, zip code-level, 
prognosticative, capture point, estimator determinant model was 
computable as the square roots of the diagonal elements of the 
estimated covariance matrix. The covariance matrix for analyzing 
the signature, oncological-related, related capture point, time se-
ries, stratified estimator determinants was expressible employing 
[( ) ( )]1Y1Y µ−′µ−E [( )( )] ,21σρ−′ρ−=∑= −WIWI  where ( )•E  designated 

the calculus of expectations, I was the n-by-n identity matrix denot-
ing the matrix transpose operation, and 2σ  was the error variance. 
The variance of the non-homogeneous, prognosticated, aggrega-
tion/non-aggregation-oriented, signatured, georeferenced, LULC 
and sociodemographic, capture point, estimator determinants 
were spread out temporally.

We introduced the conditional variance at time  t  of the 
log-return  yt   (of a georeferenced, interpolated, zip code strat-
ified, capture point denoted by  ht , which was postulated to be 
a linearizable function of the squares of past  q  log-returns and 
past  p  conditional variances in the GARCH model. More precise-
ly: 0 1 2 1 ,ht i q iyt i j p jht jα α β= +∑ = − +∑ = −  where the 
capture point zip code, oncological-related, LULC, or sociodemo-
graphic, stratified time series parameters satisfied the constraints 

( )0 0,....,i i qα ≥ =   and  ( )0 1,....,j j pβ ≥ =   in order to ensure a 
positive conditional variance. It turned out that the simple speci-
fication  1p q= =  was able to reproduce the forecastable volatility 
dynamics of the sentinel site, signatured, data capture points. This 
led the GARCH (1,1) model to tease out the time erroneous prognos-
ticative non-Gaussian, interpolated variables. Given a model speci-
fication for  ht , the log-return was then modelled as  1/ 2yt thtε= , 
where  tε  were the i.i.d. disturbances.

The student-t  specification was particularly useful, since it 
provided the excess kurtosis in the conditional distribution found 
in the time series oncological-related, signature capture point in-
terpolated processes (unlike models with Normal innovations like 
those contributed to the literature). Until recently, eigen Bayesian, 
GARCH, semiparametric, non-frequentist models have mainly been 
estimated using the classical Maximum Likelihood technique. Our 
formulation approach generated an attractive alternative which en-
abled time series robustification of the georeferenceable, capture 

point hot/cold spot, signatured, estimation, zip code model strat-
ification with probabilistic statements on time series asymptotical 
heteroscedastic functions embedded in the model parameters. We 
employed truncated normal priors on the non-frequent, Markovian 
semi parameterized, GARCH renderings where α  and

( ) ( ) { } ( ) ( ) { }2 | , 1 2 1 | , 1p N R p N Rβ α αφ α µα α α β αφ β µβ β β∑ ∈ + ∑ ∈ +

and where  µ ⋅   and  ∑⋅   were the hyperparameters. In this 
experiment,  {}1 ⋅   was the indicator function and Ndφ   was 
the d-dimensional normal density.

The prior distribution of vector ϖ  conditional on ν was found 
by noting that the components  tϖ   were i.d.d from the inverted 
gamma density, which yielded
( ) ( ) ( ) ( ) ()| 2 2 2 1 1 exp 12 1 .fp v v Tv v T t T t vt t Tv tϖ ϖ ϖ = Γ − ∏ = − − × − =    ∑

Quantifying the prior density was useful in this experiment for 
two reasons. First, it was potentially important for numerical rea-
sons to bound the degrees of freedom in the stratified, georefer-
enced, capture point, time series, sampled, signature interpolated, 
capture point, LULC, and sociodemographic stratified parameters 
to avoid an explosion of the conditional variance. Second, we ap-
proximated the normality of the time-sensitive errors while main-
taining a reasonably tight prior, which improved the convergence 
of the sampler. We let Fs denote the information set generated by 
{ };Xk k s≤ , namely, the sigma field ( ;Xk k sσ ≤  It was easy to see 
that  Fs was independent of  tε for any  s t< . According to the 
properties of the conditional mathematical expectation in the coun-
ty, zip code stratifiable, oncological-related forecast vulnerability 
model.

We achieved   ( ) ( ) ( ) ( )| 1 | 1 | 1 0E Xt Ft E t t Ft tE t Ft tE tσ ε σ ε σ ε− = − = − = =

and

( ) ( ) ( ) ( ) ( )2 | 1 2 | 1 2 2 | 1 2 2 | 1 2 2 2.Var Xt Ft E Xt Ft E t t Ft t E t Ft t E t tσ ε σ ε σ ε σ− = − = − = − = =

This implied that  σt2​  was the conditional variance of  Xt, 
and it evolved according to the previous georeferenced, zip code 
stratifiable, hot/cold spot eigen-sampled interpolated, capture 
point signature values of  { }2; 1Xk t p k t− ≤ ≤ − . We subsequently 
considered the  ARCH (1) model { 2 1 12Xt t t t Xtσ ε σ ω α= = + −  
Explicitly, the unconditional mean was quantifiable employing 
( ) ( ) ( ) ( ) 0E Xt E t t E t E tσ ε σ ε= = =  in the oncological model. Ad-

ditionally, the ARCH (1) signature capture point, time series was 
expressible as

2 2 2 2 1 12 2 2 2 1 2Xt t Xt t Xt t t t Xtσ σ ω α σ ε σ ω α η= + − = + − + − = + + . 
That is,

2 1 2Xt Xt tω α η= + +  where  ( )2 2 1t t tη σ ε= − . It was shown 
that  tη  is a new white noise generated from non-homoscedastic, 
non-Gaussian time series data, which were the stratified estimator 
determinants. In this experiment, the model residuals were quan-
tifiable if  0 1 1α< < . Eq. (2.4) was a stationary AR (1) model for the 
series 2Xt . Thus, the unconditional variance

( ) ( ) [ ] ( )2 1 12 1 2Var Xt E Xt E Xt t E Xtω α η ω α= = + − + = +
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was then transformed to  ( ) ( )2 1 1Var Xt E Xt ω α= = − . More-
over, for  0h > , the time-dependent non-Gaussian estimator de-
terminant properties of the conditional mathematical expectation, 
and by equation (2.4), then generated 
( ) ( )( ) ( )( )| 1 | 1 0E Xt hXt E E Xt hXt Ft h E XtE Xt h Ft h+ = + + − = + + − = .

The final mathematical representation of the oncological-relat-
ed, eigen Bayesian semiparametric, non-frequentist capture point, 
scaled-up, Markovian, prognosticative, signatured county, zip code, 
stratified GARCH/ARCH model formulation was describable as: 

1 1

2 2 20 q p

i j
i j

t t i t j
σ α α β σ

= =
= + ∈ +

− −∑ ∑ .where:

a.	 2
t

σ was the conditional variance,

b.	 0α was a constant,

c.	 iα  were ARCH terms (past squared signature capture 
point errors),

d.	 jβ were GARCH terms (past conditional signature capture 
point variances),

e.	 p was the order of the eigen-Bayesian semiparametric 
Markovian GARCH terms, and

f.	 q was the order of the eigen-Bayesian semiparametric 
Markovian ARCH terms.

The eigen-Bayesian semiparametric Markovian GARCH (1,1) 
model (one ARCH term and one GARCH term) employed the spec-
ification: 0 1

2 2 2
1

i
t t i t

σ α α β σ= + ∈ +
− −

.This formulation allowed for 
quantification of both short-term time non-Gaussian shocks and 
long-term volatility persistence due to violations of regression as-
sumptions in time in the model capture point sampled estimator 
determinants. In this equation, 0β  was composed of estimator 
determinants presenting the reference category of each variable 

1... .mx The semiparametric eigen-Bayesian, Markovian, capture point 
probability model was constructed based on the probability of a bi-
nary label [ zero or non-zero time series autocorrelation] given a 
feature vector:

( ) ( ) ( )1| , 1/ 1 w xP y x w w x eσ −= = = + . A bias parameter 
b was added to the model, making the probability ( )w x bσ +

. The equation rendered the probability of a vector of out-
comes y associated with a matrix of inputs x (where the nth 
row is ( )n Tx ). The maximum-likelihood fitting the probability: 
( ) ) ( )( )| , n n

nP y X w z w xπ σ= , where ( ) ( )2 1n nz y= − , if 
( )ny ∈  

{0,1}.

The model was subsequently fitted by a regularized form of 
maximum-likelihood: ( )arg max log | , Tw P y x w w wλ = −  . 
The posterior distribution over the biased time series weights of 
regular regression was corrected by the eigen-Bayes’ rule:

 ( ) ( ) ( )
( ) ( )|

| |
p D w p w

p w D P D w p
P D

= ∞ . The normalizing con-
stant in the georeferenced, capture point, signatured, interpolated, 
eigen-autocorrelated model was the integral needed to make the 
posterior distribution into one: ( ) ( ) ( )|P D p D w p w dw= ∫ . The 

model and its variants were subsequently employed to model and 
correct for geo-spatiotemporal latent multicollinearity and other 
non-Gaussian components due to violations of the regression as-
sumption in time. The georeferenced empirical dataset of scaled-
up, capture point, sentinel site, prognosticative, capture point, 
semi-parameterizable, oncological-related, estimator determinant, 
eigen-Bayesian semiparametric Markovian GARCH (1,1) ARCH 
model with autoregressive dependent errors was illustrative as fol-
lows;

( )

'

1
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1 1
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0,

t t t

t t I t m t m
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t i t i j t
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e IN I

β
ε ϕ ϕ
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−
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=
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

This model combined the mth-order autoregressive error mod-
el with the eigen-Bayesian semiparametric Markovian GARCH (1,1) 
/ARCH ( ),p q  variance model. The paradigm was denotable as the 

( )MAR -GARCH ( ),p q  regression model. The tests for the presence of 
ARCH effects (namely, Q and LM tests, from Lee and King and from 
[35] helped determine the order of the signature, interpolated, cap-
ture point, eigen-Bayesian, semiparametric, Markovian, Gaussian, 
estimator determinants, which was appropriate for the aggrega-
tion/non-aggregation-oriented county-level, zip code, stratified on-
cological -related, LULC and sociodemographic, interpolated time 
series data. For example, the LM tests examined here were signif-
icant ( )0.0001p <  , which indicated that a very high-order model 
[i.e., eigen-Bayesian semiparametric Markovian GARCH (1,1) /
ARCH] was needed to model the asymptotical, time-heteroscedas-
tic, scalable, signatured, county-level, zip code georeferenceable, 
stratifiable capture points.

The oncological-related, forecast, signature, capture point, 
eigen-Bayesian semiparametric Markovian GARCH (1,1) /ARCH 
model quantified the erroneous time series data and described the 
variance of the uncertainty misspecification term or innovation, 
as a function of the actual sizes of the previous time periods’ er-
ror terms. We noted that the variance was related to the squares 
of the previous innovations. When the potential eigenized, time se-
ries dependent, scaled-up, county-level, stratified, georeferenced, 
zip code, signatured, prognosticated, estimator determinant, data 
capture points were used in the eigen-Bayesian semiparametric 
Markovian GARCH (1,1) /ARCH analysis, the error term was not 
independent through time. Here, the errors in the capture point, 
sentinel site oncological-related, prognosticative model were diag-
nosed as serially temporally correlated. If the error term is auto-
correlated, the efficiency of OLS parameter estimates is adversely 
affected, and standard error estimates are biased.

The county-level, stratified, signatured, zip code, capture point, 
estimator determinant model did not require the approximation 
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of many time lag coefficients. The eigen-Bayesian semiparametric 
Markovian GARCH (1,1) /ARCH model improved the time series, 
oncological-related capture point sampled, and estimator determi-
nants by replacing assumptions of constant volatility with condi-
tional volatility (Table 1-8). The presence of ARCH effects in the re-
turn series was confirmed by the ARCH LM-test (χ² = 355.9, df = 12, 
p < 0.001), justifying the use of GARCH modeling. Post-estimation 
diagnostic tests on the standardized residuals showed no remain-
ing ARCH effects (χ² = 3.461, df = 12, p = 0.991), indicating that the 
GARCH (1,1) model successfully captured the conditional hetero-

scedasticity in the data. In our prognosticative, capture point vul-
nerability-oriented, county-level, oncological-related, eigen-Bayes-
ian semiparametric Markovian GARCH (1,1) /ARCH model, the 
conditional temporal heteroscedasticity portion was that volatility 
in the paradigm was nonconstant. Substituting this transformation 
employing the empirical, time-sampled, aggregation/non-aggre-
gation-oriented, stratified, sampled, sociodemographic, and LULC 
eigen-geospatially filtered estimator determinants rendered:

Table 1: Conditional Variance Dynamics.

GARCH Model sGARCH(1,1)

Mean Model ARFIMA(0,0,0)

Distribution sstd

Table 2: Pre-ARCH LM-test.

Chi-squared Degrees of Freedom (df) p-value

355.95 12 < 0.001

Table 3: Optimal Parameters.

Estimate Std. Error t value Pr(>|t|)

mu 16.082332 0.661057 2.4328e+01 0.00000

omega 0.000036 0.376491 9.6000e-05 0.99992

alpha1 0.014624 0.001295 1.1288e+01 0.00000

beta1 0.984376 0.000270 3.6478e+03 0.00000

skew 0.298639 0.018788 1.5895e+01 0.00000

shape 2.479377 0.047311 5.2406e+01 0.00000

Table 4: Robust Standard Errors.

Estimate Std. Error t value Pr(>|t|)

mu 16.082332 1.240198 1.2968e+01 0.00000

omega 0.000036 0.180886 1.9900e-04 0.99984

alpha1 0.014624 0.000773 1.8926e+01 0.00000

beta1 0.984376 0.000874 1.1257e+03 0.00000

skew 0.298639 0.057565 5.1878e+00 0.00000

shape 2.479377 0.019082 1.2993e+02 0.00000

Table 5: LogLikelihood & Information Criteria.

LogLikelihood -2015.292

Akaike 9.3362

Bayes 9.3926

Shibata 9.3358

Hannan-Quinn 9.3585
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Table 6: Box-Ljung Test on Standardized Residuals.

X-squared Degrees of Freedom (df) p-value

20.589 10 0.02415

Table 7: Box-Ljung Test on Squared Standardized Residuals.

X-squared Degrees of Freedom (df) p-value

0.001 10 1

Table 8: ARCH LM-Test on Standardized Residuals.

Chi-square Degrees of Freedom (df) p-value

3.460 12 0.991
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The misspecification term ( )∞=ερ∑ ,,1 kV kk  meanwhile, 
remained uncorrelated with the georeferenced, diagnostic, strati-
fied, hot/cold spot, county-level, regressively forecastable zip code, 
sampled hot/cold spot estimator determinants. We employed vari-
able X, as the standard OLS assumption of the disturbances, where 
ε  was independent of the georeferenced, eigenized, aggregation/
non-aggregation-oriented, signatured, estimator determinant, 
LULC, and sociodemographic, time series stratified prognostica-
tors generated from the regression process. We noted that a lag 
term was expressible as ( ) .ε+β=ρ− XyVI  in the eigen-Bayes-
ian semiparametric Markovian GARCH (1,1) /ARCH capture point 
model. Substituting the transformation rendered: 

( )ε+βρ= ∑
∞

=
XVy kk

k 0  and
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 The misspecification term 
( )ε+βρ∑ XV kk  ( )∞= ,,1 k  included the exogenous variables X. 

Consequently, the stratified, geosampled, capture point, county-lev-
el, georeferenceable, zip code, hot/cold spot, signatured, estimator 
determinants obtained employing the new time-series, dependent, 
prognosticative Gaussian variables were correlated with the mis-
specification term. Under this condition, standard OLS results for 
the basic regression model ∗ε+β= Xy  generated from the sig-
nature estimator determinants provided time-biased estimates β̂  
of the underlying regression parameters .β

The correlation, or lack thereof, between the georeferenced, 
temporal heteroscedastic, non-Gaussian, stratified, aggregation/
non-aggregation-oriented, georeferenceable, LULC and sociode-
mographic, prognosticative signatured, capture point variables and 
the misspecification terms in the scaled-up, autoregressive, onco-
logical-related, forecast, eigen-Bayesian, semiparametric, Marko-
vian GARCH (1,1) /ARCH model were employed to design spatial 
proxy variables so the non-Gaussian properties of the model due 
to violations of regression assumptions in time could be satisfied. 
Misspecification of the main exposure capture point variable and 
other stratifiable county, zip code LULC, and sociodemographic, 
estimator determinants may not be uncommon in time–series, de-
pendent, multivariate, estimator determinant, oncological-related 
time series, sampled, county-level, vulnerability regression models. 
A dataset of eigen-decomposed, Bayesian, Markovian, non-frequen-
tist semi-parameterized eigen-orthogonal eigenvalues was gener-
ated, which were equal to coefficients of the quantified time-sensi-
tive eigen-autocorrelated variables post-multiplied by a constant.

Eigenvectors associated with high positive (or negative) ei-
genvalues have high positive (or negative) autocorrelation. The 
diagonalization of the eigen-Bayesian, autocovariance, uncer-
tainty-oriented correlation matrix generated from the sampled, 
time weighted, oncological-related estimator determinant, cap-
ture point stratified data consisted of quantitating the normalized 
vectors u i , stored as columns in the matrix [ ]1... nU u u= , satisfying: 

1

n
T T

i i i
i

HWH U U u uλ
=

Ω = = Λ =∑  [3.4]

where ( ) 2
1... , 1T

n i i idiag u u uλ λΛ = = =   and  0T
i ju u =   for i j≠

. Note that double centering of Ω  implied that the eigenvec-
tors  u  i generated from the potential, non-multicollinear, non-het-
eroscedastic, signature interpolated, capture point, estimator de-
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terminants were centered, and at least one eigenvalue was equal 
to zero when

( ) 1

1 1 1 1 1 1

n
T T

T T T i i i
i

T T T T T T

x u u x
n x HWHx n x U U x nI x
W x Hx W x Hx W x Hx

λ
=Λ

= × = × = ×
∑

 
(3.5) Considering the centered vector z Hx=   and using the 
properties of idempotence of H, equation (3.5) was equivalent to:
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1 1
21 1 1 1

n n
T T T

i t i i i
i i
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z u u z u z
n nI x
W z z W z

λ λ
= == =
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(3.6). As the temporally sensitive capture point eigenvec-
tors u i and the vector z were centered, equation (3.6) was rewritten 
as: 
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i tT T
i
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= =
∑

∑
 (3.7)

In the uncertainty-oriented, semiparametric, capture point, 
eigen-Bayesian Markovian GARCH (1,1) /ARCH estimator determi-
nant model, r  was the number of null eigenvalues of ( )1rΩ = ≥ . 
These Markovian eigen-Bayesian eigenvalues and corresponding 
eigenvectors were removed from Λ and  U, respectively. Equation 
3.7 was then strictly equivalent to: ( ) ( )2

1
,

1 1

n r

i tT
i

nI x cor u z
W

λ
−

=

= ∑  (3.8) 
Moreover, it was demonstrated that the index for a given eigenvec-
tor u i was equal to ( ) ( )/1 1T

i iI u n W λ= , so the equation was rewrit-
ten: ( ) ( ) ( )2

1
,

n r

i t
i

I x I u cor u z
−

=

=∑  [3.9]

The term ( )2 ,icor u z  represented the part of the variance 
of  z  that was explainable by  u  i  in the sampled,  time series, de-
pendent, stratified, uncertainty-oriented, oncological, capture 
point, eigen-Bayesian semiparametric Markovian GARCH (1,1) /
ARCH model i i iz u eβ= + . This quantity was equal to ( )2 / vari n zβ
. The Markovian, semiparametric eigen-Bayesian eigenfunc-
tion eigenvectors  u  i  were eigen-orthogonal, and therefore, the 
non-Gaussian homoscedastic regression coefficients of the lin-
ear models i i iz u eβ= + were those of the regression model 

...i i n r n rz U u uβ ε β β ε− −= + = + + + .

The distribution of the temporal regressed, eigen-Bayesian 
semiparametric Markovian GARCH (1,1) /ARCH, capture point 
model residuals in the autocovariance matrix was then quantified. 
The maximum value of I was obtainable by the variation of z, as ex-
plained by the temporal semi-parameterized eigenvector 1u , which 
corresponded to the highest eigenvalue 1λ  in the time series, non-
frequentist, regression-related prognosticative model. We used the 
Inverse negative Hessian (INH), i.e., ( ) ^ 1H− − , for optimization and 
statistical inference of the sampled stratified, georeferenced, cap-
ture points. Oncological-related time series, LULC, and sociodemo-
graphic interpolated the estimator determinants robustly since we 
were dealing with MLE. We interpreted this product as an approx-

imation of the covariance matrix of the scalable, county, zip code, 
and oncological-related parameters. Specifically, when maximizing 
a likelihood function, the inverse of the negative Hessian (or the 
negative of the Hessian, which is the observed Fisher information) 
provides an estimate of the variance-covariance matrix of the esti-
mated parameters.

Given the loglikelihood function ( )I θ ,  the INH covariance esti-
mate had elements ( )

( ( ) )cov , 2 1jiI
i j

θ θ θ∂ ∂ ∂
= − − . The estimation function 

for multivariate models returned non-multicollinear georefer-
enceable, oncological data capture points from the expected Hes-
sian variance-covariance matrix of the eigen-Bayesian semipara-
metric Markovian GARCH (1,1) /ARCH model. In this experiment, 

( )2 , 1icor u z =  (and ( )2 , 0icor u z =  for 1i ≠ ), and the maximum 
value of I was deducible from Equation (3.9), which was equal to 

( )max 1 /1 1TI n Wλ= . The minimum value of I  in the non-Gaussian, 
eigen-Bayesian, semiparametric, non-frequentist, Markovian 
estimator determinant error matrix was obtainable as all the 
variation of z was explained by the eigenvector un-r corresponding 
to the lowest eigenvalue n rλ −  generated in the non-stationary, coun-
ty-level, zip code prognosticative, signatured, capture point model.

This minimum value was equal to ( )min /1 1T
n rI n Wλ −= . If the 

sampled, time series, stratified, prognosticated, capture point, sig-
natured explanatory variable was not temporally synthesizable, 
the part of the variance explained by each stratified georeferenced, 
county, zip code, hot/cold spot, eigen-decomposed eigenfunc-
tion eigenvector was equal to ( )2 , 1/ 1icor u z n= − . Because the 
stratified, sampled, time series, georeferenceable, capture point 
homoscedastic, non-multicollinear variables in  z  were randomly 
permuted, it was assumed that we would obtain this result. In this 
experiment, the set of  n! signatured temporal random permuta-
tions revealed that

 
( ) ( ) ( ) ( )

11 1 1 1 1 1

n

R iT T
i

n nE I trace
W n W n

λ
=

= = Ω
− −∑

. It was eas-
ily demonstrated that  ( ) 1 1T Wtrace

n
Ω = −   and it followed that 

( ) 1
1

RE I
n

= −
−

.

Finally, a model 
( ) ( )~ 0,1, , 2 ~ 0,1, , 2Yt t tztzt t v v Yt t tztzt t v vµ σ µ σ= + > = + >  

was constructed where  zt   were the  standardized  student 
innovations. We needed to have standardizable innovations 
since the conditional variance of the stratified, oncological 
sampled, time series data residuals  ( )( )t tzt t tztσ σ∈ = ∈ =   were 
equal to  ( ) ( )2 : 2 2t Var t tVar t tσ σ σ∈ = ∈ =  but only if 

( ) ( )1 1Var zt Var zt= = . When we fit the capture point signa-
ture model, we obtained the residuals:  t tzt t tztσ σ∈ = ∈ =
. Then the standardized time error innovations were recovered 
by: 1 1zt t tzt t tσ σ=∈ − =∈ − . An MLE estimate w-1as generated 
based on the fact that those innovations were i.d.d. The loglikeli-
hood estimation returned eigen-Bayesian semiparametric Markovi-
an GARCH (1,1) /ARCH parameters, and parameters of the distribu-
tion of the non-Gaussian time-series error term, in this experiment, 
were representable by: , ,Vart t tst vVart t tst vµ σ α µ σ α= + = +
with  , ,st vst vα α   where the left quantile at   %α  for the  stan-
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dardized  time distribution was the estimable number of degrees 
of freedom ( )vv . We let Ht   denote the capture point, county, 
georeferenced, zip code, signatured, sociodemographic, and LULC 
sample frames available at time , 1, ...,t t N= . The likelihood func-
tion for the innovation series was provided by

( )||| 1 ,1|||1
1, 2,..., N f t Ht

N t
f N H εε ε ε −

  −∏  =
=

 
where  f  was a standardizable Gaussian t  density function. The 
exact form of the loglikelihood objective function depended on the 
parametric form of the innovation distribution. Since our tz  had 
a standard Gaussian distribution, the loglikelihood function in 
the eigen-Bayesian, semi-parametric, Markovian, non-frequentist, 
signature, capture point, time series model was

( ) log 2 2
2 12 1 12 1log 2 2 .t t

N N t N tLLF tσπ ε σ= == − − ∑ − ∑

Since  tz had a standardized Student’s  t  distribution with 
2v >  degrees of freedom, the loglikelihood function was
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The eigen-Bayesian semi-parameterizable, non-frequentist, 
signature, stratifiable, capture point, probability model based on 
individual, georeferenceable, zip code interpolated, LULC, and so-
ciodemographic, capture point, time series sampled, GARCH/ARCH 
model characteristics was constructed and denoised. bt  was the 
logarithm given by: 0 1 1 2 2 ...

1 m mLog x x xπ β β β β
π

 = = + + + − 
, where 

π  indicated the probability of an outcome and iβ  were the signa-
ture, capture point Gaussian signature coefficients associated with 
each stratified empirical sampled, interpolated LULC or sociodemo-
graphic, stratified, capture point, signature where ix  represented 
the explanatory variables in the oncological forecast county level 
model. 

The eigen-Bayesian, semiparametric, Markovian, non-fre-
quentist, signature GARCH/ARCH model output revealed that the 
squared residual  2

tε   in the estimator determinant, county-level, 
prognosticative model followed an AR ( ),n p  process. Then, for any 

0d > , the conditional expectations in the aggregation/non-aggre-
gation-oriented, capture point, county-level scalable model were as 
follows:

( ) ( ) ( ) ( )2 2

1 1
| | |

pn

t d t i i t d i t j t d j t
i j

E E Eε ψ ω α γ ε ψ γ η ψ+ + − + −
= =

= + − −∑ ∑
.

Further, the time series prediction error was  |t d t d t d ty yξ + + += −
which had the conditional variance where ( )2 2

| |t d j t t d j tEσ ε ψ+ − + −=

. Coefficients in the conditional  residual prediction error 
variance were calculable recursively employing the formu-
la 1 ...j I j m j mg g gϕ ϕ− −= − − − where  and  0jg =   if  0j < ; 

,...,I mϕ ϕ  were the stratified, non-heteroscedastic, non-multicollinear, 
zero-autocorrelated scaled-up, capture point, sentinel site, stratified, 
sampled, oncological-related estimator determinants.

We found that our eigen-Bayesian. semiparametric, time se-
ries, dependent, GARCH/ARCH eigen-autocorrelation approach 
was more adaptable to an exploratory specification search of the 
relevant scalable, georeferenceable, sentinel site, oncological strati-
fied, capture points at the county, zip code level for [i.e., aggregation 
of potential patient households]. In contrast, for the simultaneous 
autoregressive model, the eigenvectors { }SARnee ,,1   rendered 
from the eigen-Bayesian forecast model employed the projection 
of ( )XM  on the approximated sentinel site, sampled capture point, 
time series variables X. Thus, any change in the underlying mod-
el structure required a recalculation of the eigen temporal filters 
for generating robust tessellations. Eigen Bayesian, semi-paramet-
ric temporal filtering of either the lag model or the simultaneous 
autoregressive model with a common factor constraint, thereafter, 
only required identification of one set of selected time-sensitive ei-
genvectors, namely, SARE  or ,LagE  respectively.

The relevant set of eigenvectors was applied simultaneous-
ly to the georeferenced, multivariate, capture point, sentinel site, 
scaled-up, aggregation/non-aggregation-oriented, signatured, hot/
cold spot, stratified, zip code, oncological estimator determinants. 
For the generic autoregressive model, eigen-spatial filtering was 
applied individually to each sampled, aggregation/non-aggrega-
tion-oriented, eigenized, time series, sampled estimator determi-
nants. The generic specification of autoregressive models associat-
ed a specific time lag factor with the y variable and other lag factors 
for each additional, operationalizable, aggregation/non-aggrega-
tion-oriented, oncological-related, time-series specified, estimator 
determinant. The eigenvectors { }Lagnee ,,1   filtered latent zero, 
temporal, eigen-autocorrelation erroneous non-Gaussian coeffi-
cients embedded in the generic, scaled-up, prognosticative, capture 
point, interpolated risk model for each georeferenced, aggregation/
non-aggregation-oriented, sentinel site, semi-parameterized, socio-
demographic, and or LULC, stratified non-frequentistic georefer-
enced, county, zip code-level sampled estimator determinant.

Discussion 

This paper contributes to the analysis, interpretation, and use 
of an eigen-Bayesian, semiparametric, non-frequentist, Markovian 
GARCH/ARCH model formulation, utilizing correlated oncologi-
cal-related, stratifiable, county, zip code, signature, interpolated, 
capture points, and sampled time-series estimator determinants. 
The effect of ignoring the time non-Gaussian correlation struc-
tures of the regression process is investigated. The results reveal 
a spurious impact of the time correlation on the eigenvalues in the 
predictive oncological model. To mitigate this impact, a post-eigen 
filtering procedure to whiten the data is applied. We assumed that 
by identifying and rectifying heteroscedastic and multicollinear 
signatured, interpolated, LULC, and or sociodemographic time se-
ries, residual, zero autocorrelated, non-Gaussian estimator deter-
minants, we would be able to generate a robust social messaging 
platform precisely targeting oncological-related patients at the 
county zip code level in Florida using an AI-ML infused smartphone 
interactive app.
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Initially, for the empirical sampled, time series, georeferenced, 
signature, interpolation mapping the county, zip code level, scalable, 
georeferenced, oncological-related capture points [i.e., Sampled 
LULC and sociodemographic, estimator determinants of potential 
leukemia patients with a household of $487,000 value in zip code 
33647 in Hillsborough County, Florida, we employed subject-spe-
cific time series dependent hot and cold spot, stratified, estimator 
determinants which were scaled-up using a non-bilinear, non-sto-
chastic, interpolator. Non-stochastic interpolation refers to deter-
ministic interpolation methods, which can estimate geospatially 
forecasted capture point signature values at unmeasured locations 
based on the surrounding measured values. Unlike geostatistical 
methods (e.g., Kriging), which rely on pre-determined spatial con-
texts like the degree of similarity or smoothing, our non-bilinear, 
non-stochastic interpolator attempted to noiselessly scale-up and 
non-zero eigen-autocorrelated potential, non-Gaussian, temporally 
erroneous dependence, and non-homogeneous variance between 
the empirical sampled, georeferenced, county-level, zip code, strat-
ified, capture point, signatured, stratified estimator determinants. 

We employed the Spatial Autocorrelation (Global Moran’s I) 
tool in PySAL to measure latent zero non-Gaussian eigen-autocor-
relation coefficients in the empirical, georeferenced, interpolated, 
capture point, oncological sampled, LULC, and sociodemographic, 
estimator determinant dataset. Using a set of georeferenceable, 
time series dependent, county, zip code, stratifiable, oncological-re-
lated data, capture point, feature attributes, we evaluated whether 
synthetic eigen-decomposed, eigenvectors derived from time se-
ries weighted, aggregation/non-aggregation-oriented, interpolat-
ed patterns were clustered, dispersed, or random. Here, the tool in 
PySAL calculated the Moran’s I value and a z-score (i.e., standard 
deviations) and p-value to evaluate the significance of the georefer-
enced hot/cold spot, stratified, time series estimator determinants. 
P-values revealed the numerical approximations of the county, zip 
code, and capture point regression distribution. Our capture point 
forecast model revealed non-zero, Gaussian, time series autocor-
relation. PySAL provided an efficient interactive tool for organizing 
and analyzing the stratified, time series, dependent, georeferenced, 
eigen-decomposed, non-zero autocorrelated, hot/cold spot capture 
points.

A dataset of Gaussian, non-zero autocorrelated, eigen-geo-spa-
tiotemporal filtered eigenvectors { }Lagnee ,,1   of the lag model 
was calculable in PySAL employing the independent, county-level, 
georeferenced, sampled, explanatory empirical, estimator determi-
nants [ X in eqn. 3.1]. This calculation was dependent on the under-
lying link matrix [V in eqn. 3.1]. The n th term of a Taylor series of 
a function f  was then computed in the Wolfram Language employ-
ing Series Coefficient { }, , ,f x a n   , which quantified the inverse 
Z-transform ( )1 1

na Z n
z a

−  =  − 
. which, in turn, transformed the ei-

gen-autocorrelated intercorrelation functions in the oncological-re-
lated capture point model. We introduced the concept of a discrete 
inter-spectrum of sequences ( ){ }x k  and ( ){ }y k  as the z-transform 

of the intercorrelation function ( )Rxy k  in the model forecasts. In 
so doing, we were able to demonstrate that ( ) ( )1Sxy z Syx z= − . The 
correct expression then was quantifiable as

( ) [ ]( ) [ ] [ ] [ ]{ }1/ .F z n f n z n n f n zn n f n z n Z f n ∗ ∗ = ∑ = −∞∞ ∗ ∗ = ∑ = −∞∞ ∗ = ∑ = −∞∞ ∗ − − = ∗ − 

The expression converted every oncological-related, stratified, 
georeferenced, county, zip code, Z-transform,  estimator, determi-
nant time signal by a sequence of eigen-decomposed, county-level, 
sentinel site capture points. These sentinel sites were subsequently 
transformed into a complex  frequency domain  representation. We 
considered this product as a discrete-time equivalent of the Laplace 
transform. The Laplace transform is an  integral transform  that 
converts a  function  of a  real  variable  (  tin the  time domain) to a 
function of a complex variable s (in the complex-valued frequency 
domain, also known as the s-domain, or s-plane [36]. In this exper-
iment, the Laplace transform was used to solve differential equa-
tions, particularly those involving linear time-invariant systems, by 
converting them into algebraic equations. The Laplace transform 
simplified the process of finding solutions by analyzing the time be-
havior and stability of the oncological model based on the interpo-
lated LULC and sociodemographic time series sampled, signature 
stratified data. The Laplace transform provided a lot of insight into 
the nature of the model equations by converting between the time 
and the frequency domains.

We obtained robust non-stationary, stratifiable, georeference-
able, oncological-related, empirical time series, sampled, capture 
point, non-Gaussian, estimator determinants of the time noise in 
the oncological model residuals. We obtained a higher degree of 
spectral Gaussian flatness by using an adaptive pre-whitening filter. 
This filter was based on supervised noise [i.e., Wiener-Kolmogor-
ov]. We employed the Wiener-Kolmogorov whitening procedure, 
which decomposed the Laplace transform of  ( )R τ  into the product 
of white noise and a system function ( ) ( ) ( ) ( )s W s H s H s= −  in Py-
thon. Then letting  ( ) ( )( )1h t L H s= −  and

( ) ( )( )1w t L W s= −   the time series, sampled, county, zip code, 
oncological data was given by: ( ) ( ) ( ),dhdt f h t h t w t= + where 
( ),f h t   which was a function that satisfied ( ) ( ),dhdt f h t h t= . The 

Wiener-Kolmogorov filter is an optimal prediction of the stratified, 
county, zip code time series, which relies on minimizing the mean 
square error (MSE) between the filtered output and a time signal. 
This optimization process involved calculus and the use of partial 
derivatives.

The partial derivatives of all the functions with respect to the 
georeferenced, county, zip code level, oncological-related, stratifi-
able, hot/cold spot, county, zip code, time series, capture point, and 
signature interpolated observational prognosticators revealed vio-
lations of the regression assumption in time. nxx ,,1   was orga-
nized in an m-by-n matrix, 
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 The Jacobian ( )J z  is a matrix 
that can quantify time derivatives. The Jacobian matrix described 
how the empirical sampled signature interpolated LULC and so-
ciodemographic estimator determinants changed with respect to 
its input variables at a stratified, county, zip code, specific hot or 
cold spots in time. The matrix captured the local, instantaneous re-
sponse to time perturbations around a steady state. The eigenval-
ues of the Jacobian matrix revealed information about the model’s 
final stability. For instance, since all eigenvalues had negative and 
positive real Gaussian non-zero autocovariance, the model residu-
als were stable.

Time eigen-autocorrelation revealed different lags at one cap-
ture point in time, which was then related to values at a later cap-
ture point in time, thereby capturing the dependencies in the onco-
logical sampled, hot/cold spot, stratified estimator determinants. 
In the context of spatial modeling, particularly in empirical time 
series, stratifiable, georeferenceable data capture point models, the 
Hessian matrix can be applied to derive the non-asymptotic distri-
butions of regression coefficient estimates. In this experiment, the 
inverse of the Hessian matrix from optim() was employed as the 
non-asymptotic covariance matrix for estimating the non-Gaussian 
time series parameters. Here, the non-asymptotic covariance ma-
trix was an approximation of the covariance matrix of the sampling 
distribution. The matrix was significant in the statistical analysis 
as it provided insights into the variability of the signature, capture 
point, oncological-related, time series, sensitive, estimator determi-
nants. The Hessian matrix helped evaluate the reliability and pre-
cision of the interpolated signatured, capture point, georeferenced, 
non-zero autocorrelated, county, stratified, zip code, hot/cold spot, 
estimator determinants obtained from the regressively forecasted, 
uncertainty-oriented oncological model.

The forecasts from the matrix accounted for non-zero, non-as-
ymptotic, Gaussian, eigen-filtered temporal eigen-autocorrelation. 

When analyzing scalable, oncological-related, stratifiable capture 
points with eigen-time autocorrelation, especially within complex 
eigen-spatial oncological prognosticative signature interpolated 
models, the Hessian non-asymptotic covariance matrix can con-
tribute to understanding the statistical erroneous time-sensitive 
properties and the validity of an empirical interpolated dataset. 
Non-Gaussian asymptotical, prognosticative, capture point, county, 
zip code stratifiable, signatured, time series sampled, and interpo-
lated estimator determinants were generated in a Jacobian matrix. 
Most of the contributions to the literature to date proposes approx-
imations to the determinant of a positive definite n × n spatial cova-
riance matrix (the Jacobian term) for Gaussian spatial autoregres-
sive models that fail to support the analysis of massive time series, 
sampled, oncological-related, county-level, zip code, stratifiable, 
empirical georeferenced datasets, In vector calculus, the Jacobian 
matrix of a vector-valued function of several variables is the matrix 
of all its first-order partial derivatives.

Here, the Jacobian approximations selected eigen decomposed 
eigenvalue estimation techniques, summarized validation results 
for the estimator determinant capture point eigenvalues, and fa-
cilitated non-zero eigen-autocorrelated parameters. The Jacobian 
determinants at a given capture point provided important informa-
tion about the behavior of a sampled oncological-related estimator 
determinant in time near a county zip code hot spot stratified cap-
ture point. For instance, the continuously differentiable function f 
was invertible near a capture point [ ]p Rn∈  if the Jacobian deter-
minant at p was non-zero. [i.e., inverse function theorem] [37]. In 
real-time data analysis, a branch of mathematics, the inverse func-
tion theorem is a theorem that asserts that, if a real function f has 
a continuous derivative near a capture point where its derivative 
is nonzero, then, near this point, f has an inverse function [38-44]. 
The theorem applies verbatim to complex-valued functions of a 
complex variable (example: a time series coefficient in a leukemia 
model). Here, the inverse function rule expresses its derivative as 
the multiplicative inverse of the derivative of f .

It generalized to functions from n-tuples (of the oncological 
time series estimator determinants) to functions between vector 
spaces of the same finite dimension, by replacing “derivative” with 
“Jacobian matrix” and “nonzero derivative” with “nonzero Jacobian 
determinant”. The principal contribution of this paper was to aid 
in the implementation of the time-sensitive, autoregressive, prog-
nosticative model, signature interpolated, capture point, non-noisy 
time series specifications for the georeferenced oncological-related, 
empirical estimator determinants. Our specific eigen-autocorrela-
tion additions to the predictive vulnerability oncological modelling 
literature include (1) new, more efficient capture point signature in-
terpolation uncertainty estimation second order eigen-algorithm; 
(2) an approximation of the Jacobian term for sampled census and 
landscape data forming complete state, county and zip code region-
al coverage; (3) issues of interpolated estimator determinant infer-
ence from a county, zip code stratified, scaled-up capture point; and 
(4) rectification of non-Gaussian hot/cold spot causation covariates 
due to violations of regression assumptions in time.
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For the fixed, georeferenced, county, zip code, stratified cap-
ture point, scaled-up, oncological-related interpolated time series 
parameters, a suitable choice was the diffuse prior (i.e., ( )γp  
const., but a weakly informative Gaussian prior was also possible). 
A second-order Gaussian random walk prior can allow sufficient 
flexibility while penalizing abrupt changes in time-sensitive regres-
sion functions in a county, zip code, oncological-related, predictive, 
signature, or capture point model. The second-order random walk 
model may be suitable for smoothing empirical samples, georef-
erenceable, oncological capture point estimator determinants, for 
quantifying response functions that here reveal a transitionary, 
non-Gaussian, temporally rectified, non-zero, autocorrelated signa-
ture interpolated covariates computationally using the Markovian 
properties of the joint (intrinsic) Gaussian density. From the time 
series autocorrelation plot generated, it was apparent that less of 
the upper tail in the oncological-related forecast model was in-
cluded around the highest posterior density in the quantile-based 
probability time interval due to the non-stochastically interpolated, 
capture point, zip code, signatured, LULC, and sociodemographic, 
stratified estimator determinants. The high probability distribution 
(HPD) interval does not produce equal tails when inappropriate.

However, both the quantile-based probability interval and 
HPD interval in the capture point oncological model forecasts did 
take the prior distribution into account [i.e., potential, scaled-up, 
county-level, georeferenceable, aggregation/non-aggregation, time 
series, empirical sampled, non-zero, autocorrelatable, time series 
estimator determinants]. These intervals represented the analogue 
of CIs in the model. Appealing properties of eigen-decomposed 
capture point, time sensitive, county, zip code stratifiable, georef-
erenced, oncological-related eigenvectors include: (1) they are 
mutually orthogonal and uncorrelated; (2) a single eigenvector is 
proportional to the vector 1, the intercept covariate in a regression 
model; and, (3) eigenvectors are usable to temporally visualize, the 
full spectrum of possible degrees of non-Gaussian, zero, eigen- au-
tocorrelation in an empirical sampled dataset of georeferenceable, 
county, zip code, stratifiable, oncological-related capture points and 
their sampled estimator determinants. PySAL conducted the inva-
sive geospatial time series eigen-autocorrelation signature residual 
forecast analysis, for further detection of erroneous clusters, [i.e., 
sociodemographic, stratified, time series, hot spots] and non-clus-
tered LULCs [i.e., cold spots] at the county level, stratified, county, 
zip code, locations based on outlier graphs constructed using the 
stratified, capture point interpolated signatures.

Temporal eigen-filters are usable to decompose a Jacobian ma-
trix into a georeferenced signature, empirical dataset of capture 
point, oncological-related, time series stratified eigenvectors and 
eigenvalues, which are applicable to determine non-Gaussian time 
series dependent regressors in an oncological-related, prognostica-
tive, vulnerability-oriented, signature interpolation model. The ei-
genfunction eigen-decomposed, capture point, estimator determi-
nant oncological-related, signature interpolation model optimized 
predictively targeting and prioritizing, georeferenceable, county 
level, zip code hot/cold spot locations by generating non-asymptot-
ical stratifiable, non-zero non-Gaussian, autocorrelated, estimator 

determinants temporally. Our eigenfunction signature eigen de-
composition is appropriate when a contiguous region on the right 
or left (or both) of the input is expected to deviate systematically in 
a time series, sensitive, county, zip code level stratifiable, predictive 
risk model. Such regions (i.e., potential non-asymptotic regions) did 
not occur in the vulnerability-oriented, dependent, capture point, 
vulnerability-oriented prognosticative model analysis in as the data 
were non-time series.

Here, the local temporal non-asymptotic normality property 
was quantifiable for the LULC and sociodemographic stratified, sig-
nature model estimator determinants for heuristically optimizing 
targeting and prioritizing, predictive oncological-related county, zip 
code, hot/cold spot capture point, and interpolated signatures tem-
porally. An eGARCH was subsequently constructed for quantifying 
temporal heteroscedasticity in the stratified interpolated, county, 
signatured, zip code, georeferenced, LULC, and sociodemographic, 
capture point, estimator determinants based on the non-homoge-
neous gamma distributed mean. The eGARCH model revealed the 
non-constant error variance over time, including a non-Gaussian 
prior based on the volatility quantified temporal uncertainty in 
the non-stochastically interpolated capture point signatures. This 
model checked the temporal monotonic assumptions in the sample 
georeferenced county, zip code estimator determinant, signature, 
capture point, hot/cold spot empirical dataset prior to computing 
the interpolated heteroscedastic coefficients due to violations of 
regression assumptions in time. The influence of unequal variance 
with time in the scaled-up volatility model generated potentially 
high standard deviations, followed by a high variance due to ex-
treme outliers.

These data violated the time monotonic assumptions in the cor-
relation matrix by distorting its ranking due to the high and low 
volatility variance flux in the oncological-related interpolated sig-
nature estimator determinant model, capture point, and empirical 
sampled dataset. The model rendered robust results by deflating 
the p-values, type I and type II errors due to regression assump-
tion violations over time. Moreover, smoothing out the extreme 
time series outliers in the signature, capture point, eGARCH model 
accurately represented the monotonic relationships in the correla-
tion matrix without bias due to high kurtosis and skewness. Hence, 
the output of the interpolated, georeferenced, empirical sampled 
dataset precisely captured the onset and termination period of the 
stratified, capture point, time series, signature LULC and sociode-
mographic, estimator determinants. This was crucial for under-
standing the temporal disturbances in the zip code, time-sensitive 
signature, and interpolated hot/cold spots locations at the county 
level throughout Florida. The fine eGARCH model was a general-
izable hierarchical uncertainty model that captured time volatility 
clustering by modeling the previous squared error terms and cur-
rent variance over time. We developed an extension of the eGARCH 
model, the ARCH model.

The ARCH model was a non-generalizable model that captured 
the past squared error terms [i.e., temporal shocks], which was pri-
marily focused on the time series, volatility signature, interpolated, 
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capture point, oncological, and sampled estimator determinants. 
The scaled-up, capture point ARCH model was more stable and 
provided better flexibility than the eGARCH model for capturing 
long-term conditional residual temporal heteroscedasticity in the 
time series sampled, oncological-related estimator determinants 
due to the inclusion of its lagged variances. An exponential function 
was applied to the interpolated, zip code, stratified, georeferenced, 
time signatured, capture point, LULC, and sociodemographic, coun-
ty sampled data to detect temporal erroneous fluctuation pat-
terns, such as leptokurtic and platykurtic tails, incorporating out-
liers (non-Gaussian latent zero autocovariance). The lag order was 
quantifiable based on the significant results of the Autocorrelation 
Function (ACF), Partial Autocorrelation Function (PACF), Akaike 
Information Criterion (AIC), and Bayesian Information Criterion 
(BIC). Moreover, the non-significant p-value of the post-ARCH-LM, 
Ljung box test, and chi-square statistics were considered to validate 
the stratified, county, zip code, capture point, time series, empirical 
sampled, oncological-related, signature, model estimator determi-
nants.

This study tested the signature estimator determinant distri-
butions to quantify non-constant temporal error variance based 
on extreme skewness, kurtosis, and leptokurtic/platykurtic tails in 
the oncological estimator determinants. These distributions tested 
Gaussian, Student’s t, and Generalized Error Distribution (GED) in 
the sampled estimator determinant empirical datasets. In addition, 
the skewed component was added to the student’s t and GED pri-
ors, involving degrees of freedom, mu, and rho parameters to incor-
porate the heavy skewness and kurtosis in the time series sampled, 
capture point, heteroscedastic signatured empirical capture point 
dataset. These priors had the ability to incorporate extreme outliers 
on the leptokurtic and platykurtic tails, thereby encompassing the 
extreme events, like potential, georeferenceable, oncological-relat-
ed, county-level, zip code stratifiable, capture-point hot/cold spots 
for an accurate understanding of the regression error dynamics in 
time. The most optimal georeferenceable, stratifiable, interpolated 
LULC and sociodemographic, estimator determinant distribution 
subsequently captured latent temporal, multicollinearity involving 
all the variable dependencies and the goodness of fit criteria in the 
non-asymptotical oncological model. We employed an eigen-tem-
poral filtered, MCMC simulation procedure for fitting the sampled, 
county-level, scaled-up, inferential, time series, dependent, esti-
mator determinants. In probability theory and statistics, a Markov 
chain is a stochastic process that satisfies the Markovian property 
(usually characterized as “memory lessness”) [www.mathworld.
wolfram.com].

We assumed an empirical, sampled, interpolated, LULC and 
sociodemographic, signature, stratified, capture point estimator 
determinant empirical dataset of sampled, non-zero, eigen-auto-
correlated, county-level, zip code stratifiable, oncological mod-
el forecasts [i.e., eigen decomposed, aggregation/non-aggrega-
tion-oriented, non-multicollinear, non-heteroscedastic estimator 
determinants] could account for any non-asymptotical, multivar-
iate geo-spatiotemporal bias in a simulated, interpolated, signa-
tured, capture point Markovian, semiparametric, eigen-Bayesian 

model output. In so doing, we assumed we would also be able to 
quantify conditional, autoregressive temporal non-Gaussian sensi-
tive perturbations in eigenvector eigen-geospace due to violations 
of regression assumptions in time. We found that an empirical, sig-
natured eigen-algorithmic, non-homogeneous, eigen-filtered, geo-
referenced empirical sampled dataset of eigen-autocorrelated time 
series stratified, LULC, and sociodemographic, zip code signature 
interpolated, capture point estimator determinants, could optimal-
ly forecast and delineate potential interventional, study site, hot/
cold spot zip code geolocations (e.g., old age community center 
sentinel sites) in Florida precisely; remote validation revealed di-
agnostic sensitivity and specificity statistics approaching 100 %. 
Subsequently, we estimated the eigen-Bayesian semiparametric 
non-Gaussian residual components in the eigen-autocorrelation 
oncological-related, capture point model by employing the fore-
casts from the interpolator.

By invasively examining the non-asymptotic rates, we revealed 
the consistency and efficiency of the time series, sampled, capture 
point, regressed county, zip code level, georeferenced hot/cold 
spot, estimator determinants, and their erroneousness in the ab-
sence of prior knowledge. Even a cursory look at the stratified, time 
series dependent, interpolated, hot/cold spot, signatured, capture 
point data suggested that some county zip code hot spots geoloca-
tions were riskier than others. We noted that the expected value 
of the magnitude of error terms at times was greater than at oth-
ers based on scaled-up, time-signatured, capture points. Moreover, 
these risks were not scattered randomly across quarterly or annual 
time series, dependent, county-level, sociodemographic, and LULC, 
interpolated, zip code, stratified data capture points. Instead, there 
was a potential degree of zero autocorrelation in the riskiness of 
the model forecasts [i.e., falsely forecasted zip code level, locations 
of stratifiable, georeferenceable, capture point, hot/cold spots]. Us-
ing comprehensive simulations, we demonstrated the finite sample 
performance of our method, which corroborated the theoretical 
findings of the ARCH. The ARCH models dealt with a set of noisy 
temporal issues related to the georeferenced, signature-interpolat-
ed oncological stratified covariates.

The model residuals provided a temporal volatility measure 
for precise forecast mapping, stratifiable, county-level, georefer-
enceable zip code, hot/cold spots of potential oncological-related 
patients for intervention [e.g., implementing a prevention leukemia 
protocol at a senior citizen assisted county treatment facility]. The 
ARCH model allowed the interpolated, capture point, signature. 
LULC/sociodemographic, stratified, time series weights to be esti-
mated accurately, i.e., temporally homoscedastically. The non-mul-
ticollinear model output allowed the predictors to determine the 
best weights for optimally forecasting the variance. ARCH models 
may be employable to describe a changing, possibly volatile vari-
ance in an empirical dataset of georeferenced signature interpolat-
ed LULC and sociodemographic, explanatory, time series, sampled 
estimator determinants associated with oncological processes. Al-
though an ARCH model could be used to describe a gradually in-
creasing variance over time, it may be employable in forecast mod-
elling situations in which there may be short periods of increased 
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variation in non-stochastically interpolated, LULC, and sociodemo-
graphic, signatured, capture point, sampled, oncological-related, 
time series estimator determinants.

Gradually increasing variance connected to a gradually increas-
ing mean level in an empirical sampled, county, georeferenced, in-
terpolated zip code, stratifiable LULC/ sociodemographic signature 
model might be better handled by transforming the time variable 
pre and post ARCH model. The generalization of the GARCH/ARCH 
parameterization allowed the usage of a weighted average of the 
past squared signatured oncological-related, capture point resid-
uals quantitated from the georeferenced, interpolated time series, 
estimator determinants, but it had declining weights which never 
achieved zero. The models generated forecasts [i.e., precise loca-
tions of georeferenced counties, zip code level, stratifiable, hot and 
cold spots] which were mappable in their simplest form in Python. 
The GARCH /ARCH specification asserted that the optimal predic-
tor of the variance in the following sample time period employing 
the weighted average of the long run average variance, the variance 
predicted for a period, and the new information for a present pe-
riod was the most recent squared residuals in the signature strat-
ified, prognosticative, vulnerability, county-level zip code model. 
The model predicted the conditional variances. The summary di-
agnostics validated the georeferenced specificity and sensitivity 
based on the forecasts, which also revealed a sensitivity and speci-
ficity diagnostic summary output approaching 100 per cent.

Erroneous temporality due to violations of regression assump-
tions may be quantifiable using an eigen-Bayesian, semi-paramet-
ric, non-frequentist, GARCH/ARCH model formulation. For exam-
ple, if zero time series erroneousness is present in a post-GARCH/
ARCH selected time series, an oncological-related empirical georef-
erenced dataset of estimator determinants, one would have to con-
clude the model’s non-Gaussianism is due to time heteroscedastic 
uncertainty. In an oncological, county, zip code prognosticated cap-
ture point, signatured model output, a depreciation in chi-square 
can be considered a conversion from temporal heteroscedasticity 
to temporal homoscedasticity. We were able to quantify the viola-
tion of regression assumptions in time due to heteroscedasticity us-
ing the eigen-Bayesian, semi-parametric, non-frequentist, GARCH/
ARCH model formulation, which modeled the variance of a time 
series in the estimator determinants. In eigen-Bayesian, semi-para-
metric non-frequentist, GARCH/ARCH models, an excessively large 
number of parameters [> 10,000] and the requirement of positive 
definiteness of the covariance and correlation matrices may pose 
some difficulties during time series estimation when quantifying 
stratified, LULC, and sociodemographic, oncological-related, signa-
tured hot and cold spot estimator determinants.

To avoid these issues for future research, we propose two mod-
ifications to eigen-Bayesian, semi-parametric, non-frequentist, 
GARCH/ARCH signature capture point, forecast models. An on-
cologist or other research collaborator may employ two spherical 
parameterizations: the Cholesky decompositions of the covariance 
and correlation matrices. In their full specifications, the introduced 
Cholesky models may allow for a reduction in the number of strati-
fied capture point, time series sensitive, georeferenced, signatured 

estimator determinants compared with their traditional non-time 
series counterparts. Moreover, the application of spherical trans-
formation may not require the imposition of inequality constraints 
on the oncological parameters during signature interpolation. A last 
note, the properties of an eigen-Bayesian semiparametric, non-fre-
quentist Markovian GARCH/ ARCH model formulation are useful 
for quantifying violation of assumptions in time series, oncological 
sampled, capture point data, using a weighted average of past resid-
uals with declining weights that never go completely to zero.

Here, this model formulation was introduced to allow a much 
more flexible time lag structure and to provide a marginally better 
fit for the time series, sampled, capture point, LULC, and sociode-
mographic, county, zip code stratified, interpolated hot and cold 
spot signatures. The model formulation improved the oncologi-
cal-related forecast signature  model prognostications by replac-
ing assumptions of constant volatility with conditional volatility. 
The conditional heteroscedasticity, multicollinearity, and zero au-
tocorrelation were then optimized as the volatility was definable 
non-constantly. Hopefully, it will spawn many related models that 
may be widely usable in oncological research, including GARCH, 
ARCH, and others. These variant models may introduce changes 
in terms of weighting and conditionality in order to achieve more 
accurate forecasting ranges at the county zip code level for geo-spa-
tiotemporally targeting aggregations of potential oncological-relat-
ed patients. For example, SGARCH may provide a greater weighting 
to asymptotical temporal heteroscedasticity in a sampled oncolog-
ical-related, georeferenceable, zip code stratifiable, data capture 
point, empirical, sampled time series, as these have been shown to 
create more volatility.

Deep neural network classifiers such as signature maximum 
likelihood regression classifiers, satellite signature non-stochastic 
interpolators, and time lag eigenvector spatial filters can be em-
ployed in an AI-ML [i.e., random forest (RF) and Support Vector Ma-
chine (SVM)] infused an iOS real-time interactive, oncological-re-
lated mobile app. A dashboard can be created in Python for aiding 
in the prevention, timely diagnosis, and rehabilitation of oncologi-
cal-related county, zip code empirical sampled time series data. The 
infusion of the real-time Gaussian, non-heteroscedastic, non-mul-
ticollinear, non-zero autocorrelated time series sampled estimator 
determinants into an AI-ML web-configurable and customizable 
mobile, dashboard, smartphone app can provide real-time data 
detection, retrieval, tracking, and communication of prevention, 
timely diagnosis, and rehabilitation of oncological processes. These 
classifiers can archive and analyze information that promotes the 
resolution of oncological-related problems [e.g., atrial fibrillation, 
or ventricular tachycardia due to side effects of certain medica-
tions, proper maintenance of clinical interventions such a chemo-
therapy, etc.].

This functionality may be supplemented by personal data gath-
ered in real-time, such as physiological response data, previously 
logged messages, and other clinical and nonclinical information. 
These technological advances can aid in meshing these and other 
information of prevention, and rehabilitation oncological -related 
time series data [e.g., age, demographics, nature of the symptoms: 
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‘positive’ versus ‘negative’, onset and progression, duration, precip-
itating factors associated symptoms, for example, headache, loss of 
awareness, etc.] in a web-configurable interactive, AI-ML, infused, 
iOS app available on both wearable and mobile devices. These data 
can help high-risk patients by implementing customizable treat-
ment [i.e., intelligent augmented lifelike avatars for virtual physi-
cal examination], or generating charts and graphs on prehospital 
medical information system data for real-time modeling inequali-
ties in oncological-related patient outcomes to determine if there 
exists a high a priori probability of a life-threatening event. The 
Gaussian regression classifiers can develop  a digitized version of 
a workflow checklist for the management of patients based on the 
American Cancer Society and NIHSS guidelines.

Regarding rehabilitation therapy, telemedicine demonstrat-
ed higher validity and reliability, as well as higher confidence and 
satisfaction perceived by high-risk oncological patients. The AI-ML 
interactive, infused, regression-based classifiers infused in an in-
telligent, real-time, mobile interactive, iOS dashboard can provide 
customized, prevention, and timely diagnosis of oncological-related 
rehabilitation self-care. [e.g., provide visual, audible, and vibratory 
feedback in case of incorrect movements]. To assist and improve 
motor rehabilitation, construct a smartphone-based regional con-
volutional model of care to support patients with leukemia transi-
tioning from hospital to the rural communities, continuous ongoing, 
EKG readings from a transient episode of neurological dysfunction 
caused by a focal brain, spinal cord, or retinal ischemia associated 
with an oncological intervention treatment, for providing accurate 
differential diagnosis. For some oncological injuries, the diagnos-
tic challenge is greater, and the ‘mimic’ rate is higher (and more 
varied), as there is no definitive diagnostic test; hence, real-time, 
mobile timeliness diagnosis of treatment and rehabilitation data is 
vital for prevention of death and successful recovery and outcome.

Other oncology-related mobile smartphone apps may employ 
the features of virtual reality to improve the effectiveness of re-
habilitation treatment via videos.  However,  increasing speed and 
accuracy for interactive training, using time series Gaussian regres-
sion models, can allow implementing mobile, smartphone-based, 
real-time, motion-tracking technology with a live oncological re-
habilitation instructor, which can improve strength and balance in 
patients. In addition, supervision of patients using exergames (vid-
eo games with a rehabilitative function for promoting movement 

aimed at improving strength and coordination of injured limbs) 
via teleconferencing could improve the effectiveness of exercise 
and limit errors in time series dependent, oncological data regres-
sion forecasted model outcomes [e.g., trends and survival rates in 
a community-based population to predict the all-cause mortality 
in leukemia patients with atrial fibrillation]. Evidence from epide-
miological investigations, interpopulation studies, secular trends, 
and community interventions provides a compelling rationale for 
attacking oncological related patients at the county zip code level. 
The real-time iOS mobile dashboard app can have embedded func-
tions that allow a series of questions to assist in deciding the most 
appropriate workflow for prevention, timely diagnosis, and reha-
bilitation of oncology-related emergencies.

The real-time iOS dashboard can be characterized by four func-
tional modules: health reminder, consultation, health information, 
and patient diary. The dashboard can provide real-time medical in-
formation and provide rehabilitation exercises. For example, high-
risk leukemia patients can scan to enter their clinical information to 
enhance clinical decision-making for rehabilitation, by evaluating 
the effect of immersive virtual reality technology on gait rehabil-
itation, etc. Medical staff would be able to access these modules, 
answer questions, and help with the management of the rehabili-
tation process remotely. Although the primary focus of this paper 
is on biostatistical modelling of time series data relevant to oncolo-
gy, its ramifications are also applicable to health services research. 
Resource allocation, policy planning, and targeted interventions at 
the county and zip code levels can all benefit from the model’s pre-
dictive capabilities. To guide the deployment of mobile health units, 
optimize insurance coverage policies, and enable cost-effectiveness 
studies for preventative care, for instance, high-risk leukemia clus-
ters can be identified. These insights are critical for shaping equita-
ble and efficient health policies in Florida.

Conclusion

In conclusion an eigen-Bayesian, semi-parametric non-fre-
quentist, GARCH/ARCH semiparametric, eigen-Bayesian Markovi-
an, model formulation with Stul

dent-t  innovations for the log-returns 
{ }yt

  was written 
using the scaled interpolated time sensitive, zip code, LULC and 
sociodemographic signatured interpolated capture point stratified 
data as

( ) ( ) ( ) ( )1 2 1/ 2 1,..., 0,1 2, 2 0 1 12 1,yt t v v tht t T t iidN t iidIG v v ht yt htε ϖ ε ϖ α α β= − = = + − + − 

where  0 0, 1, 0α α β> ≥  and ( )2; 0,1v N>  which rectified the 
non-normal non-Gaussian distribution. The analysis was conducted 
based on the results of the pre- and post-GARCH (LM) tests, which 
revealed depressed chi-square test statistics [chi-square statistic 
decreased by 352.49 and P-values changed from < 0.001 to 0.991] 
due to the quantification of non-zero autocorrelated, non-multicol-
linear, non-Gaussian time heteroscedastic coefficients.

The restriction on the degrees of freedom parameter ν ensured 
the conditional variance to be temporally finite in the non-

asymptotic, oncological-related, interpolated data capture points. 
Additionally, the restrictions on the stratified, georeferenced, 
capture point, signatured, stratified LULC and sociodemographic 
parameters  0, 1,α α  and  β   guaranteed positivity of the time-
sensitive sampled empirical variables. We emphasize the fact 
that only positivity constraints were implementable in the eigen-
Bayesian, semi-parametric, non-frequentist, GARCH/ARCH 
eigenized algorithm; no stationarity conditions were imposed in the 
time series simulation procedure. The model formulation proved to 
be invaluable for forecasting violations of regression assumptions 

http://dx.doi.org/10.33552/ABBA.2025.06.000648


Citation: Aarya Satardekar*, Namit Choudhari, Rishil Shah, Zachary Sanders, Nathanael B. Stanley and Benjamin G. Volatility 
Forecasting Scalable Oncological Signatures by Temporally Denoising Quadratic Heteroscedasticity in A Platykurtic Student 
T-Distributed Thick-Tailed Non-Asymptotical Regression Model Output for Optimizing Social Messaging AI-Infused Smartphone 
Applications for Targeting County-Level Hot Spots of Leukemia Patient Households in Florida. Annal Biostat & Biomed Appli. 6(5): 
2025. ABBA.MS.ID.000648. DOI: 10.33552/ABBA.2025.06.000648.

Annals of Biostatistics & Biometric Applications                                                                                                               Volume 6-Issue 5

Page 33 of 34

over time, specifically heteroscedasticity and multicollinearity in 
the estimator determinant volatility. In order to increase access, 
lessen inequities, and improve outcomes for leukemia patients, 
future research will examine the integration of predictive modelling 
with policy simulations and health economic evaluations. This 
multidisciplinary approach will assist in bridging the gap between 
practical healthcare delivery and statistical innovation.
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