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Abstract
Ewing Sarcoma (ES) is one of the most aggressive bone and soft tissue sarcomas. ES primarily targets more vulnerable populations primarily 

between the ages of 10-15 years old. Regretfully, this cancer also has no current method of prediction. ES is a small, blue, round cell sarcoma that 
typically occurs with the gene transfusion of the EWSR1-FLI1 genes across chromosomes #11-#22(~85-90%). Studies acquired in literature show 
an increasing presence of ES as well as a tendency for higher rate of metastasis amongst adolescent (<20 years), Hispanic males. While Florida is 
not a part of Surveillance, Epidemiology, and End Results (SEER) data, prior US studies have shown vulnerability to those of lower Socio-Economic 
Status. Initially this study conducted population stratification, using data gathered from Dhir et al., 2024 and the United States Census Bureau to 
determine a population stratified prevalence. We created a map based on hot and cold spots of vulnerability at the zip code level in Hillsborough 
County, Florida. Thereafter, we developed a Poisson probability model based on socio-demographic co-variants for ES. Subsequently, a second order 
autocorrelation and Bayesian model was employed to eigen-decompose the socio-demographic variants. In doing so, we were able to predictively 
map potential hot and cold spots which allowed determination of causation co-variants for ES at the zip code level in Hillsborough County, Florida.
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Introduction

Ewing Sarcoma (ES) is classified as a rare cancer type that attacks 
osseous and osseous surrounding tissues in an aggressive manner. 
While most cancers can be linked to a genetic predisposition or 
environmental factor causing genetic mutation, ES has no common 
predictive modeling capabilities, except for a disruption in gene 
expression [1]. The translocation of the mutated gene, EWS-FLI-1, 
transpires from chromosome #11and #22. While the cause for DNA 
disruption is still unknown, a prevalence in lower socio-economic 
demographics suggests that it could be an environmental factor. 
Current literature suggests that at time of diagnosis, approximately 
20% of cases have metastasized. The current survival rate of 
ES is approximately 20-30% [1]. Even more concerning is the 
fact that the lowest survival rates come from those with limited 
access to proper triage and care. Currently the treatment costs for 
chemotherapy can vary anywhere from $11,162.86 to $46,926.00 
per treatment per month [2]. This extreme price gap makes such 
crucial treatment unaffordable for many low income and uninsured 
patients, especially those that require radiation and surgery. A 
recent study examines a potential link found between those with a 
potential higher co-morbidity rate and lower socioeconomic status 
[3].

This high co-morbidity could be attributable to the lack of access 
to proper timely screening for those with a lower mean income and 
those living in rural conditions, when compared to those living in 
an urban or metropolitan environment. The factors of expensive 
and more limited care, coupled with a directed prevalence at more 
vulnerable populations, (i.e., lower income, adolescence, and racial 
demographic profiles), prioritizes the need for early diagnosis. An 
issue arises when considering the accessibility of care and cost of 
early identification vulnerabilities. Unfortunately, victims of ES may 
not realize that they are at risk until they have malignant symptoms, 
(i.e., a lump along a weight bearing joint/thorax, excessive fatigue, 
etc.). If there is a suspected genetic mutation, an oncologist may 
suggest genomic testing, which typically costs anywhere from 
$300-$10,000 [4]. ES is so rare that many care centers may not be 
able to diagnosis or treat this cancer in a timely fashion due to a 
lack of awareness or information available. Misdiagnosis, extreme 
pricing of tests and the inability to properly locate those potentially 
impacted are all key co-factors that can increase the prevalence 
of ES. In this paper we generated multiple probability models to 
determine geographical locations for prioritization of ES prevention 
and treatment.

We employed a count variable Poisson model to quantify 
land use land cover (LULC) and socio demographic co-variants 
associated with ES. We initially employed literature and census 
data to create a population stratification for the entire county of 
Hillsborough, which included all 55 zip codes. This study employed 
the known incidence of cases of ES in adolescent (<20) Hispanic 
males in Florida which has a prevalence of 2.05 to every 1 million 
[5]. We created the conversion of (Potential cases: Population), 
using the ratio ≈ 3.1/1.5 million. Subsequently we quantified 
potential cases at the zip code level employing the following 
equation ( ) ( )3.1 *

1.5
zip code population

Million
 
 
 

. From this information we were 

able to run our co-variants of our population stratification in a 
Poisson regression model [6] framework to generate a parameter 
estimator hierarchy. Subsequently, we incorporated a second order 
eigenfunction eigen decomposition to cartographically delineate 
potential hot and cold spots using a local Moran’s index. Thereafter, 
we determined the causation covariates of the zip code hottest 
and coldest spots using a comparative Bayesian paradigm. The 
understanding of shortcomings in the scope of ES in both clinical 
and epidemiological standings is crucial.

There are currently no predictive epidemiological models 
for quantifying ES from a socio-economic standpoint. Current 
literature is restricted to census data and clinical output from 
oncological studies. Our assumption was that by employing LULC 
and socio-demographic county zip code level data, we could 
generate an artificial risk stratification [7] to target potential cases 
for preemptive screening and greater accessibility to treatment 
locations. Currently there are no contributions in literature that 
employ predictive modeling for ES. Therefore

our objectives in this research undertaking were 1. To construct 
a count variable regression model to generate a parameter 
hierarchy of LULC and socio-demographic covariates 2. To generate 
georeferenced aggregation/non-aggregation oriented (Hot/Cold 
spot) autocorrelation map using a second order eigenfunction 
eigen-decomposition algorithm; and, 3. To develop a probabilistic 
geospatial Bayesian generalizable hierarchical analysis to localize 
clustering/non-clustering causation determinants for precision 
mapping protocols for ES in Hillsborough County Florida.

Methodology

This study employed statistical modeling techniques (Poisson, 
Second Order-Autocorrelation, and Bayesian), to study the 
possibility of mapping potential cases of ES in Hillsborough County, 
Florida. Using census data [8] and data found in literature a, (as 
Florida is not included in SEER), this study weighed the potential 
cases, found by utilizing an artificial population stratification 
as conducted in Satardekar et al., 2024. We used covariates 
contributed in literature to be significant in the predisposition 
of contracting ES. The prevalence of ES at the county level; 2.05 
cases per 1 million. The risk stratification was quantified using the 
equation: ( ) ( )3.1 *

1.5
zip code population

Million
. Subsequently, the covariates (Age 

0-20[male], Hispanic[male], Caucasian[male], Median Income) 
were all regressed by zip code against the population risk using a 
count-variable Poisson and Bayesian model [9]. The resulting data 
was run through a second-order eigen-function eigen-spatial filter 
eigen-decomposition model to describe the Poissonian regressed 
scalable, sociodemographic, and LULC, zip code-sampled ES 
stratified covariates. This generated stratified predictive models 
with varying confidence intervals of 90%, 95%, and 99%. A 
Bayesian model was constructed for isolating the most impactful 
causation clustering covariate when modeling ES. 

Study site

Hillsborough County is the 13th largest county by land in 
Florida and 2nd largest by total population with approximately 
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1.5 million residents currently in occupation [8]. Nearly a third of 
the population is Hispanic or of Hispanic descent putting a large 
percentage of the population at risk of contracting ES [5,8]. It is a 
central hub for both culture and economics in Florida. The enriched 

mix of urban, farmland, and rural land cover makes for a diverse 
spread of variables to be applied in statistical modeling for ES 
(Figure 1).

Count Variable Poisson Regression 
Figure 1: A study site map of Hillsborough County, Florida by zip code.

A Poisson regression, with statistical significance, was 
determined by a 95% confidence level which was employed 
to ascertain whether the county proportions of sampled 
sociodemographic and LULC, ES covariates differed by zip codes in 
the Hillsborough County intervention site. Poisson regression can 
be used for prediction, inference, hypothesis testing, and modeling 
of causal relationships among sampled, signature, capture point, 
county, zip code, stratifiable oncological-related, sociodemographic 
and LULC covariates [7]. The regression analyses assumed 
independent counts ( ). ., ii e n , taken at county zip code locations i = 
1 2...  n, where each of the signature, capture point, stratified, 
sampled count value, was derived from a Poisson distribution. 
These counts were described by a set of explanatory variables 
denoted by matrix  X  i, a 1×p  vector of covariate estimates for a 
sampled georeferenced zip code location i.

The expected value of these data was given by:
( ) ( ) exp( )i i iMi X Ni X X β= (2.1) where β was the vector of non-

redundant parameters and the Poisson rates parameter was given 
by: ( ) ( ) / ( )i i ii X i X Ni XµΛ = , (2.2). The rates parameter ( )i iXλ was 
both the mean and the variance of the Poisson distribution for a 

sampled, sociodemographic and LULC, stratified zip code capture 
point  i. The dependent variable was the artificially synthesized 
county prevalence ascertained from literature using a population 
stratification count in Hillsborough County. The regression 
analyses were performed in R. The ES sampled data were log-
transformed before analyses to normalize the distribution and 
minimize standard error. All the covariate estimates for the model 
were tested for multicollinearity and other violations of regression 
assumptions in R.

Eigen-Spatial Autocorrelation

An eigenfunction spatial filter eigen-decomposition model 
specification was also employed to describe the Poisson regressed 
scalable, sociodemographic and LULC, zip code sampled ES 
stratified covariates. The resulting model specification took on 
the following form: ( )1 1Y WYρ ρ ρ ε= − + +  (2.1) where  µ   was 
the scalar conditional mean of Y, and ε was an n-by-1 error vector 
whose elements were statistically independent and identically 
distributed (i.i.d) normally random, sampled, capture point zip 
code stratified ES covariates. The spatial covariance matrix for 
equation (2.3), using the sampled covariates was
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( ) ( ) ( )( )
1' ' 21 1E Y Y I W I Wµ µ ρ ρ σ
−   − − = ∑ = − −   ,

where ( )E • denoted the calculus of expectations,  I  was 
the n-by-n identity matrix denoting the matrix transpose operation, 
and  2σ  was the error variance.

However, when a mixture of positive and negative eigen-
spatial autocorrelation is present in a prognosticative, capture 
point, oncological-related, scalable, zip code model, a more 
explicit representation of both effects leads to a more accurate 
interpretation of empirical results [7]. In this experiment, varying, 
zip code sampled, geospatial autoregressive parameters appeared 
in the signature ES model specification, which in the model became: 

( )( )
1' 2I diag W I diag Wρ ρ σ
−

 Σ = − < > − < >  (2.4)

where the diagonal matrix of the regressed sociodemographic 
and LULC estimator determinants diagρ< > , contained sampled 

parameters:  ρ +   for those covariates pairs displaying positive 
spatial dependency, and  ρ for those pairs displaying negative 
spatial dependency. By letting  2 1σ =  and employing a 2-by-2 
regular square tessellation,

1

2

3

4

y
y
y
y

 
 
 
 
 
   

enabled positing a positive relationship between the 
sampled,  county zip code, ES stratified covariates, 1y

  and 2y
, 

a negative relationship between covariates, 3y
  and 4y

, and, no 
relationship between covariates 1y

  an 3y
  and  between  2y

and
4y

. This covariance specification yielded:

( ) ( )1,Y I I diag I diag I diag I diag WYµ ρ ρ ρ ρ ε+ + − − + + − −= − < > − < > + < > + < > +

  (2.5) where  I+   was a binary 0-1 indicator variable which 
denoted those  zip code covariates displaying positive spatial 
dependency, and  I−  was a binary 0-1 indicator variable denoting 
those sampled sociodemographic and LULC zip code data capture 
points displaying negative spatial dependency, using  1I I+ −+ = . 

If either  0ρ+ =  (and hence  0I+ =   and  I I+ = ) or  0ρ− =  
(and hence  0I− =   and  0I+ = ), then equation (2.5) reduced to 
equation (2.1). This indicator variables classification was made 
in accordance with the quadrants of the corresponding Moran 
scatterplot generated using the sociodemographic and LULC, 
stratified, ES covariates sampled in the Hillsborough County 
study site. If positive and negative eigen-spatial autocorrelation 
processes counterbalance each other in a mixture, the sum of 
the two autocorrelation parameters-- ( )ρ ρ+ −+  will be close to 
0 in an oncological-related, capture point, sociodemographic 
and LULC, ES prognosticative model [7]. In this experiment the 
Jacobian estimation was implemented by utilizing the differenced 
indicator  sampled sociodemographic and LULC, stratified 
prognosticative ES explanatory variables ( )I Iγ+ −− , which 
approximated ρ+   and  γ   with maximum likelihood techniques, 
and set  ˆ ˆˆρ γρ− += − . The Jacobian generalizes the gradient of a scalar 
valued function of multiple variables which itself generalizes the 
derivative of a scalar-valued function [10].

A more complex model specification was then posited by 
generalizing the stratified sociodemographic and LULC, capture 
point, zip code, ES indicator variables. We employed : n mF R R→  
as a function from Euclidean  n-space to Euclidean  m-space 
which was generatable in R using the distance between the 
sampled georeferenced zip code stratified covariates. Such a 
function was given by  m  sampled sociodemographic and LULC 

covariates (i.e., component functions), ( ) ( )1 1 1, , ,my x xn y x xn . 
The partial derivatives of all these functions were organizable in 
an m-by-n matrix, the Jacobian matrix J of F, which was illustratable 
as follows:

1 1

1

1

n

m m

n

y y
x x

J
y y
x x

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
 ∂ ∂ 



  



.

This matrix was denoted by ( )1,...,F nJ X X  and 
( )
( )

1

1

,...,
,..,

m

n

y y
x x

∂
∂

. The  i  th row ( )1,...,i m=  of this matrix was the gradient of 
the  ith component function ( ):i iy y∇ . We noted p  was a zip code 
stratifiable, signature, capture point sampled covariate in  Rn 

and  F  (i.e., georeferenced, sociodemographic and LULC, ES count 
data integer value) which was differentiable at p; its derivative was 
given by ( )FJ p . The model described by )( )FJ p  was the best linear 
approximation of F near the point p, in the sense that:

( ) ( ) ( )( ) ( )Fx F p J p x p o x p= + − + −
 (2.6)

The spatial structuring was achievable by constructing a 
linearizable combination of a subset of the eigenvectors of a 
modified geographic weights matrix, using ( ) ( )' '1 11 / 1 11 /n C n− −  
that appeared in the numerator of the Moran’s Coefficient (MC). 
Eigen-spatial autocorrelation can be indexed with a MC, a product 
moment correlation coefficient [10]. A subset of eigenvectors 
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was then selected with a stepwise regression procedure. Because 

( ) ( )' ' '1 11 / 1 11 /n C n E E− − = Λ , where  E  is an  n-by-n  matrix of 
eigenvectors and Λ  is an n-by-n diagonal matrix of the corresponding 
eigenvalues [9], the resulting ES model specification was given by: 

1 kY Eµ β ε= + +  (2.7) where µ  the scalar means of Y, Ek was 
an  n-by-k matrix containing the subset of k n<<   eigenvectors 
selected with a stepwise regression technique, and β  was a k-by-1 
vector of regression coefficients.

Subsequently, a number of eigenvectors were extracted from 
( ) ( )' '1 11 / 1 11 /n C n− − , which were affiliated with geographic 
patterns of the sampled sociodemographic and LULC, stratified 
ES covariates, portraying a negligible degree of non-zero eigen-
spatial autocorrelation. Consequently, only k of the n eigenvectors 
was of interest for generating a candidate set for a stepwise 
regression procedure. Candidate eigenvector represents a level of 
eigen-spatial autocorrelation which can account for the redundant 
information in eigen-orthogonalized oncological-related, capture 
point, georeferenceable, hot and cold spot estimated determinant 
patterns [9]. The preceding eigenvector properties resulted in 
ˆ yµ =  and  ˆ

kE Yβ =   for equation (2.6). Expressing equation (2.6) 
in terms of the preceding 2-by-2 example yielded multiple non-
zero eigen-autocorrelated, zip code stratified, capture point, 
sociodemographic and LULC, ES covariates.

Bayesian estimation procedures

In this experiment, Bayesian regression estimation and Monte 
Carlo, Markov Chain (MCMC) methods were employed to model 
the sampled georeferenced, zip code, signature, capture point, 
ES stratified covariates. In a generalizable Bayesian paradigm, 
hierarchical models can be used to model heterogeneity of 
variances on the log-scale [11]. The natural logarithms of variances 
were modeled using a linear model to account for heterogeneity 
of the variances (on a logarithmic scale), in terms of the ES 
stratified, zip code, explanatory, predictor variables sampled. The 
MCMC sampling began with conditional (marginal) probability 
distributions, and the georeferenced, capture point, sampled, 
sociodemographic and LULC, parameter estimators were obtained 
using pseudo-likelihood estimation (i.e., an autoregressive term 
approximated with a conventional regression procedure). This 
involved estimating the sampled coefficients ( )β  and ρ  as though 
the census and remote-sampled observations were independent. 
MCMC outputs can sample values for an parameter drawn from 
the joint posterior probability distribution [11]. In the first stage of 
the hierarchal* Bayesian analyses, a likelihood model was specified 
for the stratified, sampled, ES signature, capture point count data 
variables.

At the second stage, predictor variables of the sampled 
sociodemographic and LULC, ES zip code stratified data were 
analyzed for specifying a prior model. The model recognized 
conjugate specifications (e.g., Poisson-gamma), from the 
remote-sampled ES data. Our model assumed that the number 
of georeferenced, zip code stratified, signature, capture point, 
sociodemographic and LULC, count data variables in the 
intervention county study site, 

iY   , had a conditional independent 

Poisson distribution with mean iE   exp ( )iµ . The variable iE   was 
employed as the expected number of sampling events, which was 
proportional to the corresponding known zip code, capture point, 
sampled ES data, in . The expression exp ( )iµ  was the relative risk 
based on the estimator determinant, sampled, sociodemographic 
and LULC, stratified ES capture point, count data values: zip code 
regions with ( )exp 1iµ >  having greater numbers of observed count 
values than expected, and vice versa for regions with ( )exp 1iµ < , at 
the study site.

The log-relative term was iµ  which modeled all the sampled 
ES data, linearly as: ' , 1,...,i i i ix i Iµ β θ ϕ= + + =  (2.7). In this 
experiment,  '

ix  was the stratified, sociodemographic and LULC, ES 
signature, capture point, covariates, and β  was a vector of fixed 
effects in the Bayesian model. The terms iθ and iϕ  were used for 
capturing site-specific random effects and spatial dependence, 
respectively, in the sampled regressed zip code data. In this 
experiment all site-specific characteristics were imposed using the 
equations: 

2 1
i i

j i

j i j i

ij ij
and

ij ijϕ ϕ

ω ϕ
µ σ

ω λ ω
≠

≠ ≠

Σ
= =

Σ Σ
 (2.8). Multiple chains 

were estimated for the sampled, signature sociodemographic 
and LULC stratified covariates in the Bayesian predictive model. 
Samples were discarded to allow the model to stabilize, which 
were subsequently used to derive parameter estimates. Discarding 
the first set of “burn-in” iterations can ensure that the chain has 
reached steady state, when estimating Monte Carlo parameters, 
such as posterior means from sampled covariates [11]. After the 
model capture points had converged, zip code stratified, samples 
from the conditional distributions were used to summarize the 
posterior distribution of the model.

The Monte Carlo method of error propagation assumed that 
the distribution of error prone variables for each of the input data 
layers, generated in R derived regressively from the georeferenced, 
stratified, capture point, sociodemographic and LULC, ES covariates 
were known. For each of the data layers an error surface was 
simulated by drawing, at random, from an error pool defined by the 
geographic distribution of the sampled zip code data capture points. 
Error surfaces were added to the input data layers and the model 
was run using the resulting data error layers as input. The process 
was repeated so that, for each run, a new realization of an error 
surface was generated for each input data layer. The results of each 
run were accumulated and a running mean and standard deviation 
surface for the output was calculable. This process continued until 
the running mean stabilized. Since the random error visualizations 
were both positively and negatively non-zero eigen-autocorrelated, 
the stable running means were taken as the true Gaussian model 
output surface, and the standard deviation surface was used as a 
measure of relative error.

A simple summary was generated, showing posterior mean, 
median and standard deviation, with a 95% posterior credible 
interval. Models were compared using the Deviance Information 

http://dx.doi.org/10.33552/ABBA.2025.06.000646


Annals of Biostatistics & Biometric Applications                                                                                                               Volume 6-Issue 5

Citation: Clayton Moeller*, Namit Choudhari, Caleb Jaramillo, Aarya Satardekar, Nada Flaifl, Sasha Mosich, and Benjamin Jacob. 
Utilizing a Poissonian count variable Model, with a Second Order Eigen-Autocorrelation and a Hierarchical Bayesian Non-Frequentist 
Model to Forecast Hot-Spots of Potential Cases of Ewing Sarcoma in Hispanic Males in Hillsborough County, Florida, USA. Annal 
Biostat & Biomed Appli. 6(5): 2025. ABBA.MS.ID.000646. DOI: 10.33552/ABBA.2025.06.000646.

Page 6 of 11

Criterion (DIC) in R where  DDIC D p= + , was the sum of the 
posterior mean of the deviance, ( )D , a measure of goodness-of-fit, 
and the effective number of zip code stratified, sociodemographic and 
LULC, signature, capture point georeferenced sampled parameters 
( )Dp . This generated a measure of model complexity. A measure of 
goodness-of-fit based on the DIC values was applied and an 2R DIC , 
calculated in line with the standard 2R  measure for the model. This 
was definable as:  ( ) ( )( )2

max1 /DIC k best bestR DIC D DIC D= − − −  where 
kDIC

 was the DIC  value for model k  under evaluation, maxDIC  was 
the DIC  value for one-fixed parameter model and  bestD   was the 
posterior deviance from the model.

Results and Discussion

We generated latent, eigen-autocorrelated temporal 
indices employing the stratified estimator determinants 
using Moran’s indices ( )I  in PySAL. Moran’s, I employed 

( ) ( )( ) ( )*/ / 2N W wij xi x xj x xi xΣΣ − − Σ −  where N  was the 
number of county zip code hot/cold spot units indexed by i  and 
j . Here W was the sum of all wij x : The variables of interest (i.e., 

empirical, time series, capture point, interpolated, signature, LULC 
and sociodemographic, stratified capture points) were delineated 
as x while wij  was the matrix of the sampled, oncological, estimator 
determinant regression weights. The upper and lower bounds for 
our eigenvalue eigen-decomposition, capture point, prognosticative 
model was  quantifiable employing Moran’s I which in this 
experiment was provided by ( ) ( )max min/1 1 /1 1T Tn W and n Wλ λ
where  maxλ  and  minλ were the extreme eigenvalues of HWHΩ =
. The sentinel site, capture point, county, population stratified 
zip code, eigen-decomposed eigenvectors ie were subsequently 
mapped in oscanpy. Metrics morans into an underlying discrete 
tessellation (Figure 2).

Figure 2: A Land Use Land Cover, stratified, Hot/Cold spot map of Hillsborough County, Florida.

The ES model revealed each georeferenced, county-level, zip 
code, hot and cold spot which exhibited a distinctive topographic 
pattern ranging from Positive Spatial Autocorrelation (PSA) (i.e., 
stratified similar eigen-values of log-transformed, LULC and or 
sociodemographic, capture point, sampled time series ES data) 

( )i E Iλ > to Negative Spatial Autocorrelation (NSA) (i.e., dissimilar 
log-values clustering in eigen-geospace) for ( )i E Iλ > . Each 
population stratified, zip code, georeferenced, interpolated, eigen-
decomposed time series, explanatory estimator determinant, was 
mapped where ( )E I was the expected value of Moran’s I under 
the assumption of (a) temporal independence and (b) as outputs 
from related projection matrices ( )1M or ( )XM , respectively. We 

noted that the eigen-decomposed, Moran’s I value of each sampled 
eigen-filtered, autoregressively forecasted, georeferenced, zip code, 
hot and cold spot, capture point locations throughout Hillsborough 
County was robustly interpolatable.

The model output revealed statistically significant 
georeferenceable LULC and sociodemographic, signature capture 
point eigenvectors. We noted in the ES model summary diagnostics, 
each georeferenceable, eigen-decomposed eigenvector was equal 
to its associated eigenvalue ( ) ( )/ 2T T i T

i i i ie V V e e eλ  = +   as V  was 
precisely scalable to satisfy ( )1 1 / 2T TV V n + =  . We employed 
Pearson’s correlation coefficient in PySAL for summarizing the 
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autocovariance terms which were quantifiable between the 
interpolated, county-level, capture point, signatured, stratified 
ES, estimator determinants. We defined the covariance of the 
georeferenced zip code data using the  residual autocorrelated 
estimator determinants divided by the product of their standard 
deviations employing 

( ) ( )( )cov ,
, X YE X YX Y

X Y
X Y X Yσ σ σ σ

µ µ
ρ

− −  = = . The formula defined the 
capture point, time series, dependent, regression correlation 
coefficients of each autoregressively prognosticated, zip code 
stratified, georeferenced, signature capture point, hot/cold spot in 
Hillsborough County (Figure 3).

Figure 3: Capture point, interpolated, eigen-decomposed ES correlation coefficients of each prognosticated, zip code hot/cold spot in 
Hillsborough.

The eigen-model was based on the stratified signature, LULC 
and sociodemographic, sampled, estimator determinants. For 
example, during the remote validation exercise we were able to 
ascertain that many georeferenced eigen-autocorrelated, county, zip 
code, stratified hot spots of potential ES patients were aggregated 
in Thonotosassa (zip code 33952). The geospatial pattern in the 
eigenvectors exhibited only positive local eigen-autocorrelation 
and vice versa for negative eigen-autocorrelation. The interpolated, 
time sensitive, stratified, hot/cold spot, signature,  scalable, 
autocorrelated, temporal, Gaussian, oncological-related explanators 

ie and je within each set of eigenvectors were mutually non-zero 
which was revealed using symmetrical transformation ( )1

2
TV V+

. This was expressible employing a quadratic. The quadratic 
form representation of the eigen-temporal autocorrelation index 
[i.e., Moran’s I] captured the non-zero autocorrelation in the 
interpolation of the zip code, signature, hot/cold spots generated 
by the ES stratified LULC and sociodemographic signatures.

The eigen-temporal filtered eigenfunction, eigenvectors 

derived from the georeferenced, stratified, zip code, sampled, 
hot/cold spot, capture point non-zero autocorrelated estimator 
determinants were eigen-orthogonal but only to the constant 
unity vector 1 in X. Eigenvectors corresponding to different 
eigenvalues will be orthogonal if the matrix is symmetric i.e., real 
spectral theorem [10]. The second order  eigenfunction eigen-
decomposition allowed linking each collection of the eigenvectors 
to its specific, georeferenced county, zip code, stratified, sampled 
capture point, by letting SARE  be a matrix whose vectors were 
subsets of { }1,..., n SAR

e e . A higher-order, stratified, autoregressive, 
capture point model was subsequently constructed in PySAL 
from the georeferenced, time series, signature, capture point, 
sampled dataset of county, zip code-level stratified interpolated 
signature regressors. The model determined where if the lag orders 
were mis-specified in the sampled, interpolated ES data due to 
heteroscedastic asymptoticalness.

This violation of regression assumption in the forecasted 
LULC and sociodemographic, georeferenced, hot/cold spot data, 
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we assumed would be a part of the misspecification bias in the ES 
sampled modeled estimator determinants which was subsequently 
correctly specified using a non-asymptotic order. A fixed-effect 
formula may not remain the same under non-stationarity [12]. A 
linearized combination of the non-asymptotical, time sensitive, 
regression coefficient subset was approximated by employing the 
misspecification term of the signature, capture point, signature 
interpolated, LULC and sociodemographic, estimator determinant, 
prognosticated model output which in this experiment was 
expressible as 

1

k k
SAR

k
E Vγ ρ ε

∞

=

 ≈ 
 

∑  (3.1). The linearized combination 

SAR
E γ did not remain eigen-orthogonal to the sampled, non-
asymptotical, georeferenced, signature, exogeneous variables X and, 
the estimated stratifiable zip code, hot/cold spot capture points 
since β̂  was biased. Furthermore, as a property of the Ordinary 
Least Square (OLS) estimator, the approximated term SAR

E γ  was 
also not eigen-orthogonal to the capture point model residuals ε̂ .

The model ˆ
ˆ ˆ

SARy X Eβ ε= + +  [3.2] eigen-decomposed the 
georeferenced, non-zero, autocorrelated signature, stratified, 
capture point, LULC and sociodemographic, stratified prognosticated 
signature variables y into a systematic trend component, a 
stochastic signal component and white-noise residuals. The 
term ˆSARE γ removed error variance inflation in the Mean Square 
Error (MSE) term attributable to potential, latent, heterogenous 
erroneous variance [i.e., asymptotical heteroscedascity] embedded 
in the empirical sampled, georeferenced, zip code stratified, county, 
aggregation/non-aggregation-oriented, eigen-temporal filtered 
interpolated, signatured, capture point, non-infinite us estimator 
determinants. Subsequently, a temporal lag model was constructed 
employing LogE which was a matrix of the sampled, ES, stratified 
estimator determinant eigen-decomposed eigenvectors  which  in 
our forecast model renderings were revealed as a subset of 
{ }1,..., n Log
e e . The approximation of any potential misspecification 

term was subsequently quantifiable employing 

( )
0

k k
Log

k
E V Xγ ρ β ε

∞

=

≈ +∑
.

Since LogE γ  was uncorrelated with the interpolated, county-
level, stratified, zip code, signatures, X, its incorporation into the 
georeferenced, scaled-up, sentinel site, vulnerability-oriented 
model attempted to correct the temporal bias using estimated plain 
OLS parameters β̂ . The equation ˆ ˆ ˆLogy X Eβ γ ε= + +  [3.3] revealed 
the specific, empirical sampled, eigen-valued capture point, 
estimator determinant variance which in this experiment was 
retrievable from the eigen-decomposition of the  lag signatured, 
LULC and sociodemographic, population stratified, capture point, 
model, forecast summary diagnostics. We noted that the trend 
and the time-series signals were uncorrelated and the MSE was 
deflated. Euclidean distances between the capture point, temporal, 
scaled-up, county, zip code aggregation/non-aggregation-oriented, 
stratified LULC and sociodemographic, ES estimator determinants 
were definable in terms of an n-by-n geographic weights matrix, C, 
whose ijc values were, 1 if the sampled geolocations i and j were 
deemed nearby, and 0 otherwise.

Adjusting this matrix by dividing each row entry by its row 
sum subsequently rendered C1, where 1 was an n-by-1 vector of 
ones which converted the regression-based matrix to matrix W (i.e., 
weighted correlation grid).

The resulting autoregressive signature model specification 
with no sampled, scaled-up, signatured, interpolated, capture 
point, stratified, ES, estimator determinants (i.e., the pure 
autoregression specification) subsequently took on the following 
form: ( )1 1Y WYµ ρ ρ ε= − + + whereµ was the scalar conditional 
mean of Y, and ε was an n-by-1 error vector whose LULC or 
sociodemographic parameters were statistically independently 
“normalized” random variates. Geospatial signatured, capture 
point autoregressive models are fit using empirical datasets that 
contain observations on geographical areas, or on any units with 
a spatial representation [13]. Approximate standard errors for the 
stratifiable, county, zip code-level, prognosticative, capture point, 
estimator determinant model was computable as the square roots 
of the diagonal elements of the estimated covariance matrix.

The covariance matrix for analyzing the signature oncological, 
related capture point, time series, stratified estimator determinants 
was expressible employing

( ) ( ) ( )( )
1' ' 21 1E Y Y I W I Wµ µ ρ ρ σ
−   − − = Σ = − −   w h e r e 

( )E • designated the calculus of expectations, I was the n-by-n 
identity matrix denoting the matrix transpose operation and 2σ
was the error variance. The variance of the non-homogenous, 
prognosticated, aggregation/non-aggregation-oriented, 
signatured, georeferenced, LULC and sociodemographic, capture 
point, estimator determinants were spread out geospatially. 
The diagonalization of the autocovariance, uncertainty-oriented 
correlation matrix in the hot/cold spot eigen-autocorrelation 
generated from the sampled, oncological estimator determinant, 
capture point stratified data consisted of quantitating the 
normalized vectors u i , stored as columns in the matrix [ ]1 ... nU u u=
,  satisfying:

1

n
T T

i i i
i

HWH U U u uλ
=

Ω = = Λ =∑   (3.4)  where  ( )1... ndiag λ λΛ = , 
2 1T

i i iu u u= =   and  0T
i ju u =  for  i j≠ . Note that double centering of 

Ω implied  that  the eigenvectors iu
 generated from the potential, 

signature interpolated, capture point, estimator determinants were 
centered and at least one eigenvalue was equal to zero.

( ) 1

1 1 1 1 1 1

n
T T

T T T i i i
i

T T T T T T

x u u x
n x HWHx n x U U x nI x
W x Hx W x Hx W x Hx

λ
=Λ

= = =
∑

 
(3.5) Considering the centered vector z Hx=  and using the 
properties of idempotence of H, equation (3.5) was equivalent to: 

( )

2

1 1
21 1 1 1

n n
T T T

i t i i i
i i

T T T

z u u z u z
n nI x
W z z W z

λ λ
= == =
∑ ∑

 
(3.6) As the ES stratified sensitive capture point eigenvectors u i and 
the vector z were centered, equation (3.6) was rewritten: 
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( )
( ) ( )

( ) ( )
2

21

1

, var
,

1 1 var 1 1

n

i i n
i

i iT T
i

cor u z z n
n nI x cor u z
W z n W

λ
λ=

=

= =
∑

∑
 (3.7). 

In the ES estimator determinant model, r was the number of null 
eigenvalues of Ω (r ≥ 1). These eigenvalues and corresponding 
eigenvectors were removed from Λ and U respectively. Equation 3.7 
was then strictly equivalent to: ( ) ( )2

1
,

1 1

n r

i iT
i

nI x cor u z
W

λ
−

=

= ∑  (3.8) 
Moreover, it was demonstrated that index for a given eigenvector 

iu
 was equal to  ( ) ( )/1 1T

i iI u n W λ=  so the equation was rewritten:

( ) ( ) ( )2

1
,

n r

i i
i

I x I u cor u z
−

=

=∑  (3.9)

The term ( )2 ,icor u z  represented the part of the variance of z that 
was explainable by iu

 in the sampled, time series, dependent, ES, 
stratified,  uncertainty-oriented, capture point, model i i iz u eβ= + . 
This quantity was equal to  ( )2 / vari n zβ . ES estimator determinant 
decomposed eigenfunction eigenvectors iu

 were eigen-orthogonal, 
and therefore, the non-Gaussian homoscedastic regression 
coefficients of the linear models i i iz u eβ= +  were those of the 
regression model i i n r n rz U u uβ ε β β ε− −= + = + + + . The idea of 
researching this idiopathic oncological complexity in the scope of 
epidemiology is twofold. The first is the lack of literature available. 
Though it was discovered over one hundred years ago, ES is still 
largely a point of confusion for many oncologists. There are only 
two set biological factors (i.e., age and race) that are indicators of 
disposition for this condition. Everything else is simply speculation. 
Clinically, there has been some progress made in understanding 
the genomic factors of ES, but still there are no contributions in the 
literature that reveal a scope of prevention or preemptive measures.

By regressing ES using more evidential independent variables 
may reveal additional cofactors related to this dysplasia on what 
could help in developing more focused research. This leads to the 
second part, which is the lack of early diagnostic power. Staging 
for cancers is crucial for prognosis and survivability. While there 
are only three different stages found in literature, which are not 
universally agreed upon; some say stages 1-3 and others say 2-4 
due to severity [1,13]. This continues to prove the volatility of ES 
and why supplemental research is necessary. In the count variable 
model, we noted that there was no overdispersion as the VIF was 
below 10. This may have been due to the low sample count of LULC 
and socio-demographic variants we used in the Poissonian model. 
We will attempt to increase variables in future research efforts by 
using a negative binomial regression with a non-homogeneous 
gamma-distributed mean. In so doing we would be able to remove 
outliers from the independent variable dataset while generating 
and developing a more efficient hierarchy of the co-variants. We 
employed a second order eigenfunction eigen decomposition 
algorithm to map hot and cold spots for potential ES caseload. In 
this experiment we found that Thonotosassa was the hottest spot 
based on Moran’s I coefficient.

Thonotosassa is a smaller semi-rural community in the 
Hillsborough County intervention site. We generated a LULC map 
of this region, which allowed us to distinguish geolocations in 

Thonotosassa of aggregation sites where <20 White and Hispanic 
males occurred more frequently. We then constructed a non-
frequentist hierarchical generalizable Bayesian hierarchical model 
to determine the causation covariates of the hottest capture point 
in Thonotosassa (33592). We found that the covariate “Population” 
was the most impactful in the determination of hotspots and 
prevalence of ES. This is to be expected when considering the 
relationship between ES, population, and race. Based on the results 
of the models generated in this research, it may be suggested 
that as the population or the presence of Caucasian or Hispanic 
males under 20 increases, so will the number of cases of ES. As 
Thonotosassa appears as a rural location it may be suggested that 
there may be a link between lower socio-economic status and the 
development of ES. Randomly distributed data is to be expected in 
this situation as the covariates are extremely limited, however this 
model proved the ability to employ statistical modeling not only in 
oncology, but in more niche areas of study that are lacking in depth 
of research.

This issue can be rectified with more in-depth research to 
discover more regress able covariates as well as utilizing time-
based models (e.g., GARCH) in future works to create more accurate 
prediction times for risk, diagnosis, and staging. This study was 
designed to illustrate the ability to utilize advanced statistical 
modeling in ES probability prediction. Georeferencing ES data 
could prove to be increasingly significant when targeting locations 
for triage centers for diagnosis and treatment. Unfortunately, rural 
areas receive less funding than urban centers in Hillsborough 
County. Due to this bias, there is a necessity to continue to conduct 
research on ES in rural territories throughout Florida. Precision 
forecast maps targeting and prioritizing transmission-oriented, 
diagnostically stratifiable, ES estimator determinants associated 
with a subcounty, transmission-related, hot /cold spot may require 
disturbance-free regressors. (e.g., non-Gaussian error variance) 
for asymptotically optimally reflecting the geo-spatiotemporally of 
hierarchical, diffusion-related sampled ES determinants. Statistical 
error or uncertainty is the amount by which an observation differs 
from its expected value [14], the latter being based on the entire 
population from which the statistical unit was chosen randomly.

The expected value, being the mean of the entire population, 
may be typically unobservable in an empirical, non-asymptotical, 
vulnerability-oriented, geo-spatiotemporal dependent, ES, 
hierarchical diffusion-related,  subcounty, prognosticative 
model, and hence the statistical error may not be observable. A 
residual (or fitting deviation), on the other hand, may reveal an 
observable estimate of the unobservable statistical error, which 
may be embedded in noisy non-normal trajectories in empirically 
regressed georeferenced datasets of district-level, sub-county, 
diagnostically, stratifiable, geo-spatiotemporal, hierarchical, 
diffusion-related, vulnerability-oriented, parameterizable 
time series, ES  determinants. Outlier detection algorithms are 
intimately connected with robust statistics that down-weight 
some observations to zero especially in epidemiological, forecast-
oriented, signature, vulnerability models (e.g., Jacob et al. 2023). 
In future experiments we may define several outlier detection 
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algorithms related to an empirical epidemiological dataset of 
georeferenced,  hierarchical, diffusion-related, sub-county, hyper/
hypo-endemic, ES stratified, risk, model estimator determinants.

Next, we may apply asymptotic theory for evaluating the 
predictors. In statistics, asymptotic theory, or large sample theory, 
is a framework for assessing properties of estimators and statistical 
tests [15]. Within this framework, it is often assumed that the 
sample size n may grow indefinitely; the properties of estimators 
and tests are then evaluable under the limit of n → ∞. Subsequently, 
an ES modeler, researcher or data analyst may investigate the gauge 
(i.e., the fraction of wrongly detected disturbances) in the model 
and establish asymptotic normality and Poissonian theory for the 
gauge. Although contemporary oncological-related regression 
literature focuses on short-term forecast volatility modeling  of 
georeferenceable, [GPS indexable], LULC stratifiable sub-county 
sampled determinants, [7] questions remains whether a Generalized 
Autoregressive Conditional Heteroscedastic (GARCH) model can 
reproduce similar attributes under multicollinear, asymptotical, 
zero autocorrelated, behavioral states using interpolated capture 
point signatures. A future ES researcher may consider the statistical 
inference of the class of asymmetric, power-transformed, eGARCH 
(1,1) models in presence of non-Gaussianism due to violation in 
regression assumptions when the strict stationarity condition is 
not met in an ES regression forecast vulnerability county model.

Doing so, would establish the non-asymptotic temporal 
normality of the quasi-maximum likelihood estimator when strict 
stationarity does not hold in an empirical georeferenced dataset 
of time series dependent aggregation/non-aggregation-oriented, 
ES (i.e., hot/cold spot) georeferenceable, estimator determinants 
sampled at the sub-county zip code level. Doing so, would 
also establish the optimal scalability of varying signature geo-
spatiotemporal interpolatable LULC and sociodemographic,  time 
series dependent ES capture points but without interception.  An 
eGARCH (1,1) model with a skewed student’s t distribution should 
be tested for rectifying asymptoticalness, heteroscedasticity, 
latent multicollinearity and zero non-Gaussian autocorrelation 
in an empirical dataset of georeferenced time series sampled, ES 
stratified capture point determinants incorporating platykurtic 
and leptokurtic skewed thick tails. The results of the eGARCH (1, 
1) may be validated using the post-ARCH test where the chi-square 
statistic may be decreased, hence revealing time homoscedastic ES 
determinants.

Subsequently, the capture point estimator determinants 
may be incorporated  into a spatial Monte Carlo Markov Chain 
(MCMC), eigen-Bayesian, semi-parametric iterative non-frequentist 
model  to rectify type I and type II errors due to violations of 
temporal regression assumptions. The model may verify if the ES 
regressed model forecasts comply with Tobler’s law of geography 
(i.e., non-chaotic, non-heteroscedastic, non-zero autocorrelated 
coefficients) [16]. The volatility clustering propensities rendered 
from the spatial, MCMC, eigen-Bayesian ES model may validate the 
determinant scalability incorporating eigen-orthogonal Moran’s 
eigenfunction eigenvectors. The test  may exploit the existence 

of a universal estimator of a non-asymptotic time sensitive 
covariance matrix of the maximum likelihood estimator (MLE) 
for quantifying errors due to violations of regression assumptions 
in time space and geography in a prognosticative sub-county, 
ES estimator determinant model. By establishing the local non-
asymptotic normality property in a nonstationary, signature, 
capture point, Markovian GARCH (1,1) model, an ES researcher may 
be able to tease out random non-Gaussian temporal patterns due to 
violations in regression assumptions in an empirical georeferenced, 
capture point, LULC and sociodemographic, estimator determinant 
dataset in time space and geography.

A social media platform using a real-time high-performance 
artificial intelligent (AI) interactive mobile iOS app may be 
then optimized for messaging and prioritizing prevention and 
treatment protocols to optimally regressively target and map 
vulnerable county-level ES stratified hot spots (i.e., aggregation of 
georeferenceable, non-zero autocorrelated, non-heteroscedastic, 
non-multicollinear, estimator determinants in a subcounty 
location). By adjusting for non-asymptotic normality due to 
violations of temporal regression assumptions in an AI  infused 
smartphone dashboard, forecasts rendered from a signature county 
-level, capture point ES stratifiable, eigen-Bayesian semiparametric 
GARCH model would reveal, non-Gaussian real time detection 
of asymptotical heteroscedascity, latent multicollinearity and 
non-Gaussian zero autocorrelation coefficients in time series 
model. This data may aid in transforming ES stratified forecast-
oriented, vulnerability model  independent variables so that they 
are compliant with Tobler’s law of geography, in so doing, social 
messaging primary prevention, timeliness early diagnosis and 
rehabilitation of ES patients at the county zip code level can be 
optimized in real time.

Conclusion

Given the volatility and shrouded nature of ES, this study was 
able to accurately, predictively model ES in a mostly unexplored 
fashion using advanced statistical models and georeferencing. The 
LULC autocorrelation map found that Thonotosassa was the hot 
spot for development of ES. A push for further clinical research on 
ES covariates linked to environmental factors and time (currently 
only utilizing race and age as definite predispositions), will allow us 
to utilize our current models used as well as time-based models to 
scale out our study to a larger scale to present with greater accuracy 
and reveal more opportunities for outreach and intervention.
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