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Abstract
Second-order eigenfunction eigen-decomposition eigen-algorithms have been used to determine hyper/hypo-endemic, aggregation/non-

aggregation-oriented, aquatic larval habitat foci of multiple nuisance and vector arthropods. Unfortunately, a major West Nile Virus (WNV) mosquito 
vector, Culex quinquefasciatus, has not been geospatially forecasted for determining geolocations of unknown foci for implementing county level 
larval control. In this article, we would like to employ geospatial autocorrelation eigen-algorithms to determine georeferenceable hot and cold spots 
of storm sewer Cx. quinquefasciatus habitats in Dallas County and Bexar County in Texas. We aimed to predictively map unknown storm sewer foci 
of Cx. quinquefasciatus by employing interpolated capture point sentinel sites. Initially, we employed Google Earth Pro tools to identify sentinel site 
storm sewers in Dallas and Bexar. We then generated a Red, Green, and Blue (RGB) wavelength reflectance signature using Sentinel-2 visible and near 
Infrared, 10-meter spatial resolution data. We interpolated previously unknown storm sewer habitats in both entomological intervention counties. 
Remote validation models revealed sensitivity and specificity approaching 100 %. Currently we are implementing Larval Source Management (LSM) 
tactics from “Seek and Destroy” (e.g., targeted habitat modification/destruction) for treating these important foci.
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Introduction

West Nile Virus (WNV) is an arthropod vector-borne virus 
that belongs to the genus Flavivirus in the family Flaviviridae. 
WNV can be traced back to 1937 where it was isolated from the 
blood of a pregnant female patient in the West Nile District of 
Northwest Uganda [1]. The first observed occurrence of WNV in 
North America was in 1999 in New York City [2]. From 1999 and 
2001, 149 cases were reported in humans across 10 states in the 
United States (U.S) [3,4]. The first widespread occurrence of WNV 
across the U.S. was documented in 2002, with 4,156 human cases 
reported across 40 states. Although WNV occurrences in Texas have 
only been observed since 2002, between 2002–2011 1,514 cases 
were reported to the Texas Department of State Health Services 
[5]. Caseload peaks occurring in 2006 and 2009 respectively [6]. 
Endemicity of WNV in Texas constitutes a significant threat to 
vulnerable human populations with Texas itself having the third 
largest elderly population in the United States [7]. Alleviation 
of these areas requires treatment of populations consisting of 
significant “bridge-vectors” such as Cx. quinquefasciatus and 
surveillance of reservoir species.

The primary vectors of WNV are primarily varied species 
of Culex mosquitos which includes Common House Mosquito 
(Culex pipiens), Eastern Encephalitis Mosquito (Culex tarsalis), 
and Southern House Mosquito (Culex quinquefasciatus). However, 
Asian Tiger Mosquito (Aedes albopictus), White Dotted Mosquito 
(Culex restuans), Unbanded Saltmarsh Mosquito (Culex salinarius), 
and Northern “Tree Hole Mosquito” (Ochleratatus triceriatus) are 
also known to carry WNV [8]. WNV is commonly transmitted by 
inoculation from common arthropod vectors in the southeastern 
U.S.A such as Cx. quinquefasciatus and other species of mosquitos 
that include the Cx. Erraticus, a prime vector for eastern equine 
encephalitis virus, as well as Ae. Albopictus [9]. Inoculation begins 
when an infected avian host, usually from the Corvidae family is 
bitten by an uninfected mosquito for a blood meal leading to the 
mosquito now being infected with WNV. This mosquito will then 
move towards either inoculation to transmit WNV to another 
avian host or become a “bridge-vector” [10]. Infected mosquitos 
subsequently transmit WNV to human hosts through the collection 
of blood meals for healthy embryonic development and release of 
ovum [11].

The salivary glands of mosquitos release the virus into the 
bloodstream of an uninfected host. 2 to 14 days after the incubation 
period symptoms will begin to manifest in the host in humans. 
75%-80% of those infected with WNV will be asymptomatic or 
possess a mild fever [12]. In addition, 20% of individuals with 
WNV will develop flu like symptoms and less <1% of individuals 
will develop infections of the nervous system [13]. When severe 
WNV is present about 50% will be neuroinvasive while 50% will 
be non-neuroinvasive. Cx. quinquefasciatus, is enclosed within the 
Cx. pipiens species complex. This complex is known for the primary 
role it plays in the transmission of WNV in the southeastern 
United States [14]. Cx. quinquefasciatus resides in sub-tropical 
temperatures and has a broad thermal range from 14.1-32.2°C 
[15]. Cx. quinquefasciatus thrives at a temperature of 25.2°C and 

survivorship rates of mature Cx. quinquefasciatus is extremely high 
at temperatures around 25.2°C [16]. Subsequently, this temperature 
range increases infection rates of WNV in Cx. quinquefasciatus [17].

The life cycle of Cx. quinquefasciatus begins with the ovipositing 
of an egg raft on the top of the surface of a body of water. 
Temperatures between 24 – 29°C Care preferential for embryonic 
development of Cx. quinquefasciatus. Oviposited egg rafts are oval 
shaped in nature with about 100 to 300 larvae will be present after 
oviposition depending on climatic conditions. On average a single 
Cx. quinquefasciatus female will oviposit 155 ova [18]. In addition, a 
Cx. quinquefasciatus females can lay 3-5 egg rafts in a single lifetime 
[19]. The ideal water surface for oviposition is primarily a standing 
body of water with an abundance of organic material from which the 
ovum and subsequent larvae can obtain nutrients. These larvae in 
normal climatic conditions will hatch in an estimated 24-30 hours 
[20]. Cx. quinquefasciatus larvae prefer temperatures between 
20-24 °C and experiences increased survivorship rates [21]. After 
completing successful larvae development Cx. quinquefasciatus 
briefly enters the pupa stage where emergence occurs in a few 
hours [22].

This process takes about 5-8 days in total with optimal climatic 
conditions. Climate can have profound consequences for mosquito 
arthropod diseases by altering the distribution and spread of 
vector-borne diseases. These include malaria, dengue and West Nile 
Virus by changing the ecological response, distribution, seasonality, 
and range [23-24]. It is of paramount importance to understand 
the interplay of socioeconomic and climatological conditions and 
how they influence mosquito habitats. Current literature lacks a 
clear understanding of the impact of varied species of mosquitoes 
on WNV outbreaks in Texas, particularly the analysis of combined 
influence of socioeconomic factors and climatological conditions on 
mosquito habitats. This article addresses the question of whether 
unknown foci of Cx. quinquefasciatus habitats can be mapped using 
interpolated sentinel signatures. The objective of this research is 
to implement Larval Source Management (LSM) real-time tactics 
associated with the “Seek and Destroy” (S&D) approach which can 
provide significant insights into new, real-time control measures 
for reducing larval vector density [Macro S&D] and blood parasite 
levels [Micro S&D]. “S&D” has already been employed in the 
treatment of malaria within suspected populations [25].

Utilization of these tactics involved a low-cost (< $1000) 
drone (DJI Phantom) for eco-geographically locating water bodies, 
including natural water bodies, irrigated rice paddies, cultivated 
swamps, ditches, ponds, and other common breeding sites for 
Anopheles mosquitoes in the Gulu district of Northern Uganda. 
The first hypothesis was the feasibility of integrating real-time, 
scaled-up sentinel site spectral signatures with UAV (Unmanned 
Aerial Vehicles) or drone imagery and satellite WorldView-2 (0.46 
meter) data using geospatial artificial intelligence (geo-AI), infused 
into an iOS application. This would allow a local vector control 
officer to retrieve a ranked list of visually similar breeding sites for 
similar species of mosquito such as Cx. quinquefasciatus and their 
respective county-level capture points with GPS-indexed centroid 
coordinates. A smartphone app can map each georeferenced UAV-
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sensed capture point by a mobile field team, consisting of trained 
local village residents led by a vector control officer. That same day 
habitats are signature mapped, spatially forecasted, and treated 
with larvicide.

Implementing a real-time Macro and Micro “S&D” intervention 
tool, along with other existing tools (insecticide-treated mosquito 
nets (ITNs) and indoor residual spraying (IRS), at a county-level 
intervention site can lower seasonal West Nile Virus prevalence 
through timely modification of aquatic Cx. quinquefasciatus 
larval habitats through precise targeted larvicide interventions. 
The hypothesis in this research is to utilize non-asymptotic, 
multicollinear, independent covariates and skewed heteroscedastic 
(unequal variance), non-Gaussian, county-level data (i.e., Dallas and 
Bexar) and interpolated Sentinel-2 visible and near-infrared (NIR) 
10-meter resolution indexable RGB (Red, Green, and Blue) signature 
estimators to address violations of regression assumptions in 
eigenvector Eigen-Bayesian eigen-geospace. In so doing we would 
be able to establish precise georeferenced locations of unknown foci 
of Cx. quinquefasciatus habitats in the entomological intervention 
sites. We will also construct multiple vegetation and elevation, 
catchment watershed proxy satellite models using visible infrared 
and near-infrared bands to visualize values of co-variances.

In literature, extensive use of co-variances such as Normalized 
Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), 
Modified Normalized Difference Water Index (MNDWI), and Land 
Use Land Cover (LULC) have all been utilized for interpolating 
various mosquito vector arthropod signatures of A. arabiensis [26], 
Ae. Albopictus [27], and Ae. Aegypti [28]. Normalized Difference 
Vegetation Index (NDVI), Modified Normalized Difference Water 
Index (MNDWI), Soil-Adjusted Vegetation Index (SAVI), Digital 
Elevation Model (DEM), and Land Use and Land Cover (LULC) 
are essential remote sensing indices and classifications used 
in environmental monitoring and analysis. NDVI, developed to 
quantify vegetation density and health by comparing the near-
infrared and red-light reflectance from vegetation, helps in 
identifying and analyzing green biomass [29]. MNDWI is used for 
enhancing the presence of open water bodies while suppressing 
the noise from built-up land areas, vegetation, and soil, which 
improves water feature extraction in various landscapes [30]. SAVI, 
on the other hand, is an adaptation of NDVI designed to minimize 
the influence of soil brightness in areas where vegetation cover is 
low, by incorporating a soil brightness correction factor, making it 
particularly useful in arid and semi-arid regions [31].

DEMs provide 3D representations of terrain elevations, 
offering crucial data for topographic analysis and watershed 
management [32]. LULC classifications provide comprehensive 
information on the distribution and changes in land use and cover 
types, which is crucial for understanding human-environment 
interactions and managing natural resources [33]. Together, these 
indices and classifications play a crucial role in eco-hydrological 
studies, providing vital information for sustainable environmental 
management. Specifically, in this experiment we are employing 
NDVI for storm sewer Cx. quinquefasciatus mosquitoes due to the 
correlation between vegetation abundance and the propensity 

of Culex mosquitoes to thrive in vegetative environments. The 
importance of vegetation is underscored by studies showing 
that ecotones, areas where different types of vegetation meet, 
can influence mosquito populations. For example, Cx. tarsalis 
mosquitoes were found to be more abundant in ecotones with high 
vegetation, as they provide suitable habitats for these mosquitoes 
and their hosts. In this research, community-level spatial models 
were developed for determining mosquito abundance and 
environmental factors that could aid in the risk prediction of 
WNV outbreaks [34]. We used various covariates like DEM, which 
provides crucial data on the topography of the study area.

This information helps in understanding how elevation and 
terrain can affect mosquito habitat breeding sites. NDVI was 
employed to assess the density and health of vegetation, which 
is a critical factor since Culex mosquitoes are often found in 
vegetative areas where they can find both breeding sites and 
hosts. LULC data was used to classify different land types and 
their usage, revealing how built environments, forests, and water 
bodies contribute to mosquito habitat suitability. Additionally, the 
MNDWI was used to identify water bodies, which are potential 
breeding sites for immature Cx. quinquefasciatus mosquitoes. This 
index is particularly useful in distinguishing water features from 
built-up areas and vegetation. By integrating these indices—NDVI, 
DEM, LULC, and MNDWI—into our models, we can accurately 
predict mosquito abundance and potential hotspots for WNV 
outbreaks, leveraging the strengths of each type of data to provide 
a comprehensive understanding of the environmental factors 
influencing mosquito populations. Furthermore, an eigen-Bayesian 
second-order Markovian, semi-parametric autocorrelation model 
was tested using eigen-spatial filter and eigen algorithm to identify 
outliers in the interpolated signature data in Python. 

Given that Cx. quinquefasciatus is a primary bridge vector for 
WNV, treating areas with high densities of Cx. quinquefasciatus 
larvae is advisable, with the only restriction being the identification 
of habitats. Cx. quinquefasciatus has already been observed to 
oviposit inside storm sewer habitats. For example, immatures 
of multiple vector-competent mosquito species present in these 
habitats, totaling over 64,560 larvae in 1,761 storm sewer drains 
in one study site [35]. Identifying autocorrelation would allow 
the forecast of potential georeferenceable hot and cold spots 
of Cx. quinquefasciatus storm sewer larval habitats. Therefore, 
the objective in this article is 1. To identify storm sewer Cx. 
quinquefasciatus habitats using google earth mapping tools. 2. 
Generate a spectral signature of a sentinel site. 3. To interpolate 
the signature. 4. To develop satellite proxy maps. 5. To develop a 
customized “S&D” for the intervention counties.

Materials and Methods

Study Sites

Dallas County, Texas, is the second most populous county in 
the state, with an approximate population of 2,613,539 people 
as of 2020 [36]. Covering an area of 2,350 km², Dallas County is 
characterized by extensive urban land use due to the land being 
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predominantly zoned for metropolitan purposes [37]. The Dallas/
Fort Worth Metroplex, located in North Central Texas, features a 
mixture of prairie and oak woodlands, though much of the natural 
landscape has been overtaken by urbanization and agriculture. 
The region’s climate is humid subtropical with hot summers and 
considerable annual temperature variation. Precipitation varies 
from less than 20 inches to more than 50 inches annually, typically 
favoring wet periods in spring and fall and dry periods in summer 
and winter. The area experiences mild winters with periodic 
cold fronts, and the urban heat island effect reduces the number 
of freezes compared to surrounding rural areas. Summers are 
characterized by high temperatures often exceeding 100 degrees, 
high humidity, and brief afternoon thunderstorms. Spring and fall 
are the wettest periods, with frequent thunderstorms that can 
bring severe weather such as hail, damaging winds, flooding, and 
tornadoes.

The county’s urbanization, combined with its climate, creates 
numerous artificial habitats for Cx. quinquefasciatus, the primary 
vector for WNV in Texas [38,39]. Bexar County, Texas, located 
in the south-central part of the state, is home to a population of 
approximately 2,009,324 people as of 2020. Spanning an area 
of 3,250 km², Bexar County features significant urban land use 
concentrated in the city center of San Antonio [40]. The outer areas 
of the county are primarily rural, suburban, or in transition between 
rural and urban, creating a diverse range of land covers. This 
variation significantly affects the patterns of Cx. quinquefasciatus, 
the primary vector for WNV in Texas. The climate of Bexar County 
has seen a 2.4°F increase in the 12-month average temperature 
from May 1900 to April 2023, with the average temperature over 
this period being 68.7°F [41]. This warming trend, coupled with the 
diverse land cover, impacts the distribution and abundance of Cx. 
quinquefasciatus across the county, making Bexar County a critical 
area for studying the environmental factors influencing mosquito 
populations and the spread of WNV.

Spatial Analysis

This article presents two space-time model specifications, 
one based upon the generalizable, linearized, mixed model and 
the other upon Moran’s eigenvector space-time filters. Moran’s 
coefficient is an index of spatial autocorrelation, involving the 
computation of cross products of mean-adjusted values that are 
geographic neighbors (i.e., covariations). These ranges are roughly 
(-1, -0.5, 0) to nearly 0 for negative, and nearly 0 to approximately 
1 for positive, spatial autocorrelation, with an expected value of 
-1/(n-1) for zero spatial autocorrelation, where n denotes the 
number of areal units [42]. We identify signature algorithms to 
fit an RGB satellite signature of a georeferenced storm sewer Cx. 
quinquefasciatus aquatic larval habitat, for a training dataset. We 
did so to learn more about how regression functions characterized 
spilled over hierarchical diffusion of interpolated, non-Gaussian, Cx. 
quinquefasciatus storm sewer capture point habitats. Our objective 
was to predictively prioritize and target, georeferenecable, hyper/
hypo endemic aggregation/non-aggregation oriented, potential 
transmission sites based on the occurrence, abundance, and 

distribution of the interpolated Cx. quinquefasciatus storm sewer 
for implementing “S&D”.

A Moran spatial filtering technique was generated by 
employing Python code using GeoPandas and LibPySAL. The code 
performed an eigenfunction, second order eigen-spatial filter 
eigen-decomposition of the random effects (REs) on the varying 
potential, capture point, Cx. Quinquefasciatus, storm sewer, larval 
habitats. Spectral emissivity determinants rendered (SSRE) and 
spatially unstructured random effect (SURE) components. The 
RE model incorporated synthetic eigen-spatial filtered signature 
capture points at the county level. The eigen-orthogonalized, 
eigenfunction eigenvectors derived from a geographic connectivity 
matrix were used to account for SSRE and SURE using standardized 
z scores stratified by zip codes due to geo-spatiotemporal spill-over 
from the interpolated Sentinel-2, 10-meter Cx. quinquefasciatus 
RGB signatures. We then calculated the conditional probabilities for 
each county zip code using the conditional distribution functions 
derived from the regressed diagnostic spectral interpolated RGB 
signature habitat determinants.

This included the probability density function, cumulative 
density function, and quantile function. Subsequently, a random 
variable mean response specification was written in scikit-learn as 
follows: esitk and eHith were the ith elements of the K < NT and 
H < NT selected eigenvectors, respectively. Estk and EHth were 
parsimoniously extracted from the doubly centered space-time 
signature capture points, which included sentinel site, zip code 
stratified areas, and oviposition-related storm sewer habitats. 
The expectation attached to the equation, (i.e., RE ≡ SURE) was 
satisfiable both having trivial SSRE components. For the eigen-
Bayesian post-treatment context, the SSRE component was 
also modeled in scikit-learn with a conditional autoregressive 
specification which revealed residual non-zero autocorrelation 
(i.e., geographic non-chaos). This component also revealed non-
homoscedasticity, non-asymptotic behavior, and Gaussian non-
multicollinearity in the zip code stratified georeferenced clustering 
propensities of Cx. quinquefasciatus storm sewer larval habitats.

The model’s variance implied a substantial variability in the 
prevalence of storm sewer habitat occurrence, abundance, and 
distribution across each entomological intervention site due to the 
hierarchical diffusion of the interpolated capture point sentinel 
sites. We surmised that using an interpolated RGB signature eigen-
Bayesian, semi-parametric Markovian, non-frequentist model would 
reveal non-Gaussian residual error amplification due to violations 
of regression assumptions [i.e., geospatial heteroscedasticity, 
multicollinearity, and or zero autocorrelation]. Hence, we assumed 
that regardless of whether the true processes in our storm sewer 
signature model were explicitly eco-geographical, the spatial 
relationships among our georeferenced, Cx. Quinquefasciatus, storm 
sewers, larval habitats would be informative. We assumed these 
relationships along with aggregation/non-aggregation-oriented 
entomological foci and satellite-sensed, georeferenced signature 
RGB interpolation would reveal more information about nearby 
potential storm sewer breeding sites.
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In this experiment we built space into the traditional 
entomological prognosticative model for Dallas and Bexar counties 
for the intended usage of constructing a robust georeferencable, 
zip code stratified, scalable, Cx. quinquefasciatus larval habitat 
regression model framework using Python Spatial Analysis 
Library (ySALA). The construction began with a standard linear 
regression model devoid of any geographical reference, after which 
we formalized spatial relationships in three main ways. First, we 
encoded an empirical dataset of synthesized Sentinel-2 visible and 
NIR data, as well as signaturized exogenous explanatory capture 
points. Secondly, we considered spatial heterogeneity as the 
systematic variation of scalable, georeferencable, autoregressive, 
eigen-spatial filter eigen-algorithmic outcomes across eigenvector 
eigen-Bayesian eigen-geospace. Third, we examined dependence 
and the effects associated with the characteristics of neighboring 
storm sewer habitats in both intervention counties. Throughout 
the analysis, we focused on the conceptual differences on how each 
approach entails rather than on the technical details.

RGB interpolation of Cx. quinquefasciatus storm sewer 
habitats

Maximum likelihood classification, a remote sensing technique, 
employs Bayesian methods and multivariate Gaussian distribution 
[43-44]. It is a widely used and popular method in remote sensing, 
which has been in place for many decades [45-46]. To determine 
if a real time, sensed, sentinel site, storm sewer, capture point, 
georeferenced, Cx. quinquefasciatus habitat breeding sites pixels 
in the satellite data was part of a given RGB-LULC. The probability 
of this occurring was definable by the posterior probability 

( ) ( | )( | ) .
( )

i i
i

P P P x PP P x
P x

= Where ( )iP P  represented the probability 
of the i-th class and ( )P x  represented the probability of a sensed 
pixel. ( | )iP x P  which in this experiment was defined by where x 
was the feature vector of the georeferenced, oviposition capture 
point.

In the prognosticative geospatial analysis, pixel iµ was the 
mean vector of the i-th class features iΣ  was the covariance matrix 
of the i-th signature, RGB-LULC, class features, 1

i
−Σ  was the inverse 

covariance matrix of the -th class features and was the determinant 
of the covariance matrix of the i-th class attributes. This process 
has already been used to evaluate land cover feature attributes 
in Dacca, Bangladesh for identifying unknown georeferenceable 
Ae. aegypti, mosquito vector of dengue, habitats signatures and 
implementation of “S&D” at the state level, using the real time 
sensed Sentinel-2 visible and NIR satellite imagery.

Eigenvector Analysis

Initially, we developed a misspecification perspective for the 
model incorporating potentially eigenizable capture points of 
georeferenceable storm sewers Cx. quinquefasciatus habitats. This 
interpolation model was constructed using the acf () function from 
the stats model’s library in Python. We specified the number of 
lags to use with the `nlags` argument, assuming the georeferenced 
risk-based storm sewer larval habitat-related parameter fit was 

*y X β ε= +  (i.e., a standard regression equation). The primary 

function of our RGB interpolation model generation was to identify 
agenized hot/cold spots at the county level in georeferenceable 
locations, and to detect noise (atmospheric, sensor, geometric) 
caused by violations of regression assumptions (i.e., non-Gaussian 
zero autocorrelation, often termed ‘geographic chaos’). This analysis 
focused on explanatory factors such as hyper/hypo endemic 
conditions, aggregation/non-aggregation-oriented patterns, and 
georeferenced determinants derived from capture points and 
sentinel sites. We forecasted RGB signature georeferenced scalable 
capture points for storm sewer Cx. quinquefasciatus larval habitats 
with Matplotlib, Pandas, Geopandas and Basemap in Python.

The mapping functionalities in Python allowed us to create 
choropleth, prism, block, and surface maps along with the 
RGB signature interpolation maps. Three key techniques were 
emphasized to generate regressed county-level maps related to 
storm sewers. These techniques included Map Data, Annotation, 
and the Output Delivery System (ODS) in Python. The stratified 
latent coefficients were optimally eigendecomposed into a white-
noise component, ,ε  and a set of unspecified model outputs that 
had the structure 

*

.y XB Eγ

ε

ε
=

= + +


 White noise is a univariate or 
multivariate discrete-time stochastic process, whose terms are 
independently distributed with a zero mean [47]. The annotate 
facility enabled us to generate a special dataset of graphics 
commands from which we created the potential interpolated, RGB 
signature, and model annotate output. The annotate output created 
multiple customizable, signature topographic maps of capture 
points, sentinel sites, georeferenced county-level areas, and zip code 
stratified LULCs. The misspecification term was ( ) ( ) expS T S t=  
the interpretive land cover patterns were quantified based on the 
distribution of various determinants derived from the regressed, 
non-time-series, dependent variables.

These determinants, which included hyper/hypo endemic, 
transmission-related, stratified, and aggregation/non-aggregation-
oriented factors were georeferenced and related to storm sewers. 
In this experiment, independent key dimensions of the underlying 
uncertainty processes required analyzing empirical Geosampled 
data at the sentinel site and county level; as well as interpolated 
larval habitat data capture points. We were able to define a pattern in 
the misspecification term. Python provided an efficient interactive 
tool for organizing and analyzing the georeferenced stratified, 
aggregation/non-aggregation-oriented, hot/cold spots. Python is 
efficient at finding sentinel site entomological county-level capture 
points that were georeferenced non-geo-spatiotemporally [48]. 
Next, we generated an autoregressive model for Cx. quinquefasciatus 
at the county level, incorporating spatialized hyper/hypo endemic 
and aggregation/non-aggregation-oriented feature attributes. This 
model utilized RGB signature, capture points, and sentinel sites all 
scaled up to cover a larger geographical area.

We employed an asymptotical, stratified variable Y as a 
function of a nearby regressor Y in the epidemiologic hot/
cold spot model. A capture point at a sentinel site, representing 
storm sewer habitats for Cx. quinquefasciatus, was stratified 
residually and subjected to eigen spatial filtering to determine 
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estimator determinants. The explanatory indicator value I (an 
autoregressive response) and the residual of Y were treated as a 
function of a nearby Geosampled Y residual. This situation follows 
a spatial error specification or SAR (Spatial Autoregressive) 
model for autoregressive, dependent, hot/cold spot modeling. 
The autocorrelation model furnishes an alternative specification 
that frequently is written in terms of matrix W. Here, the spatial 
covariance of the potential georeferenceable data was a function 
of the matrix 1 1( )( ) ( )( ),TI CD I D C I W W I Wρ ρ ρ ρ− −− − = − −  
where T denoted the matrix transpose. The resulting matrix was 
symmetric and was considered a second-order specification as it 
included the product of two spatial structure matrices ( . ., )Ti e W W
. This matrix restricted positive v remote sample discrete integer 
values of the autoregressive parameter to the more intuitively 
interpretable range of ˆ0 1.ρ≤ ≤

Euclidean distances between the georeferenced sentinel site 
capture point, scaled-up to county-level, Cx. quinquefasciatus storm 
sewer larval habitat estimator determinants were definable in 
terms of an n-by-n geographic weights matrix C. These ijc  values 
were, 1 if the geosampled hold/cold spot geolocations i and j 
were deemed nearby; and 0 otherwise. Adjusting this matrix by 
dividing each row entry by its row sum subsequently rendered 
C1, where 1 was an n-by-1 vector of ones which converted the 
regression-based matrix to matrix W. The resulting Python model 
specification with no georeferenced scaled-up sentinel site capture 
point, estimator determinants (i.e., the pure spatial autoregression 
specification) subsequently took on the following form: 

(1 )1 ,Y WYµ ρ ρ ε= − + +  where µ  was the scalar conditional 
mean of Y and ε  was an n-by-1 error vector. The parameters 
were statistically independently, identifiable, distributable, and 
normalized random variates. Spatial autoregressive models are 
fitted using datasets that contained observations on geographical 
areas or on any units with a spatial representation [49].

Approximate standard errors were calculated for the 
eigenizable TB estimator determinant in the county-level. 
Stratified vulnerability RGB signature model which is geo-spatially 
specifiable was computable as the square roots of the diagonal 
elements of the estimated covariance matrix. The covariance matrix 
for analyzing the capture point, sentinel site, Cx. quinquefasciatus 
storm sewer estimator determinants were expressible employing  

[ ] 1 2( ')( ) ,I W I Wρ ρ σ−= Σ = − −  where ( )E •  designated the 
calculus of expectations. It was the n-by-n identity matrix denoting 
the matrix transpose operation and 2σ  was the asymptotical 
error variance [i.e., the variance of how far the geosampled, 
non-homogenous, hyper/hypoendemic, aggregation/non-
aggregation-oriented, interpolated storm sewer habitat estimator 
determinants were spread out, eco-geographically]. Subsequently, 
we employed a Hessian matrix in Python; we quantified an 
empirical, georeferenced dataset at the county level. This dataset 
included stratified, hyper/hypoendemic, hot spot areas, focusing 
on entomological observations related to Cx. quinquefasciatus 
storm sewer larval habitats. As in Newton’s method, we employed 
a second order approximation to find the minimum of a function 

( )f x  in the geosampled, estimator, determinant dataset.

We employed a Taylor series of ( )f x  to generate 
1 ,
2( ) ( ) ( )

Tx x B xT
k k kf x x f x f x

∆ + ∆ ∆
+ ∆ ≈ +∇  where ( )f∇ the gradient was 

B, which in this experiment approximated the Hessian matrix. In 
mathematics, the Hessian matrix or Hessian is a square matrix 
of second-order partial derivatives of a function [50]. This 
matrix described the local curvature of a function of the hyper-
hypoendemic, Cx. quinquefasciatus storm sewer larval habitat 
estimator determinants. Given the function, 

1 2( , ,..., ),nf x x x  if all 
second partial derivatives of existed and were continuous over the 
domain of the function, then the Hessian matrix off was derivable 
from ( ) ( ) ( ),ij i jH f x D D f x= where 1 2( , ,..., )nx x x x=  and iD  
were the differentiation operator with respect to the i-th argument. 
The matrix rendered in Python was  

We noted the determinant of the sensitive matrix in our 

scaled-up, epidemiologic prognosticative model was Hessian. 
In image analysis, the Hessian matrix can describe the second-
order variations of local image intensity [i.e., hyper/hypoendemic, 
aggregation/non-aggregation-oriented, Cx. quinquefasciatus 
stratified geolocation around a scaled-up, capture point, sentinel 
site, classified, LULC, stratified, reflectance pixel] thereby encoding 
the shape information.

In practice, it is computable by convolving an image with second 
derivatives of the Gaussian kernel in the x- and y-directions in the 
literature. The matrix described the local curvature forecasted 
and spatial structures over a whole county. The Hessian matrix is 
suitable for detecting the shape of hot/cold spots related to vector 
arthropods at the epidemiologic, county-level, capture points, 
and sentinel sites [51]. We assumed the Gaussian kernel to have a 
standard deviation of 1, which was applied to each capture point 
pixel in a georeferenced intervention county satellite, Sentinel-2, 
10-meter spatial resolution image so that the Hessian matrix 
was expressible as .Hf HxxHxyHyy=  In this experiment, 
the Hessian matrix was relatable to the Jacobian matrix by  

( )( ) ( )( )H f x J f x= ∇ . In vector calculus, the Jacobian matrix of 
a vector-valued function of several variables is the matrix of all its 
first-order partial derivatives [52]. When this matrix is square, that 
is, when the function takes the same number of variables as input 
as the number of vector components of its output, its determinant 
is referred to as the Jacobian determinant.

Both the matrix and the determinant are often referred to 
simply as the Jacobian in literature. The Jacobian of a vector-valued 
function in the georeferenced storm sewer Cx. quinquefasciatus 

2 2 2

2
1 1 2 1

22 2

2
22 1 2

2 2 2

2
1 2

( ) .

n

n

n n n

f f f
x x x x x

ff f
H f x xx x x

f f f
x x x x x

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
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related estimator determinants generalized the gradient of a 
scalar-valued function. This gradient, in turn, generalized the 
derivative of every entomological estimator in the geosampled 
discrete integer values of the empirical dataset. In other words, the 
Jacobian matrix of a scalar-valued function in the epidemiologic 
risk model, when transposed, represents the gradient. This 
gradient, in turn, reflects the derivative of a scalar-valued function 
for a single, georeferenceable, aggregation/non-aggregation-
oriented explanatory variable at capture point, sentinel sites, at 
the county-level. Furthermore, differentiation was possible at each 
sentinel site. The Jacobian described the amount of “stretching”, 
“rotating”, or “transforming” that the function imposed locally near 
that capture points.

For example, here ( ', ') ( , )x y f x y=  was employed to 
smoothly transform a evidential prognosticator in the Jacobian 
matrix ( , )Jf x y  which in this case described how the geosampled, 

georeferenced, county-level, estimator, determinant in the model 
performed. In our semi-parametric, Markovian, eigen-Bayesian, 
county-level, prognosticative, epidemiological, storm sewer Cx. 
quinquefasciatus habitat model θ  was a parameter that was 
unknown and had to be inferred from the, geosampled, capture 
point epidemiologic empirical data. The joint probability of the 
data was optimally quantifiable by employing: 

1
1

( | ) ( ,... | ) ( | );
n

n i
i

p X p x x p xθ θ θ
=

= =∏  

whereby, ( | , ) ( | )p X p Xθ α θ=  and ( | , ) ( | )i ip x p xθ α θ=  
was conditionally independent of the hyperparameters. Eigen-
Bayesian semiparametric, Markovian, non-Gaussian inference 
was determined by the posterior distribution of the parameter 

( | , )p Xθ α  by employing:

( | ) ( | )( | , ) ( | ) ( | ) ( | ) 1 .
( | , ) ( | ) ( | ) ( | ) ( | ) ( | )1

( , , )
( , , )( , , )( | , )

( , )

n p x pip X p p X p i
np X p d p X p d p x p dii

p X
p X dp Xp X

p X

θ θ αθ α θ α θ θ α
θ α θ α θ θ θ α θ θ θ α θθ θ

θ
θ

θ α

θ α θθ αθ α
α

 ∏ = = = =
 ∫ ∫ ∏∫  = =

∫=

A second-order Gaussian random walk prior was employed 
to allow enough flexibility while penalizing abrupt changes in the 
function. The second-order random walk model is commonly used 
for smoothing data and for quantifying response functions as it is 
computationally efficient due to the Markov properties of the joint 
(intrinsic) Gaussian density [53].

Results and Discussion

RGB Signature Results

The RGB signature of a storm sewer habitat for Cx. 
quinquefasciatus was captured, providing a detailed spectral profile 

across various Sentinel-2 bands (Figure 1). The spectral profile 
shows the following RGB values: Coastal Aerosol (Band 1) at 0.2, 
Blue (Band 2) at 0.3, Green (Band 3) at 0.25, Red (Band 4) at 0.35, 
Vegetation Red Edge 1 (Band 5) at 0.32, Vegetation Red Edge 2 
(Band 6) at 0.28, Vegetation Red Edge 3 (Band 7) at 0.3, NIR (Band 
8) at 0.1, Narrow NIR (Band 8) at 0.05, Water Vapor (Band 9) at 
0.08, SWIR-Cirrus (Band 10) at 0.12, and SWIR (Bands 11 and 12) 
at 0.05 (Figure 2). The spectral profile indicates a peak reflectance 
in the red band (Band 4) with an RGB value of 0.35, while the lowest 
reflectance is observed in Narrow NIR (Band 8) and SWIR (Band 
12) with RGB values of 0.05. 

Figure 1: Spectral profile for Storm Sewers in Dallas Texas.
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Figure 2: Interpolation Results of Bexar County, Texas.

Stochastic Interpolation

Figure 3: Interpolation Results Dallas County, Texas.
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The interpolation algorithm was successful providing results 
for Dallas and Bexar counties. Bexar had 25 original points and 
20 newly interpolated points. These newly interpolated points are 
potential habitats for Cx. quinquefasciatus larvae. Dallas County 
had 25 original points too with 19 newly interpolated points after 
running the eigen-spatial filter eigen algorithm (Figure 3).

Eigen-Bayesian Hot/Cold Spots Results

The analysis of hot and cold spots in Bexar and Dallas Counties 
revealed that in Bexar County, hot spots with 95% and 99% 
confidence are located in central and northeastern areas, while cold 
spots with similar confidence levels are in the southern area. Bexar 
County also displayed potential aggregation of storm sewer habitats 
in areas of high elevation in the northwest region of San Antonio. In 

Dallas County, the NDVI-based map showed hot spots concentrated 
in the central region, particularly west of the city center, with cold 
spots scattered in the eastern parts. The DEM-based analysis for 
Dallas County indicated a central clustering of cold spots with 
high confidence, while hot spots were found in the southern and 
northeastern regions. Non-zero autocorrelation was examined 
and identified after employing eigen-Bayesian semiparametric, 
Markovian, Hot/Cold spots analysis for the interpolated points. 
Dependent variables had significant correlations between 
Cx. quinquefasciatus storm sewer habitat aggregation/non-
aggregation. Due to the findings of non-zero autocorrelation, we 
can assume heteroscedasticity and multicollinearity are both 
absent (Figures 4-7).

Figure 4: Eigen-Bayesian Fixed (DEM) Results for Bexar County, Texas.
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Figure 5: Eigen-Bayesian Inverse Distance Squared (MNDWI) Results for Bexar County, Texas.

Figure 6: Eigen-Bayesian Fixed (DEM) Results Dallas County, Texas.
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Figure 7: Eigen-Bayesian Fixed (NDVI) Results Dallas County, Texas.

Results of Moran’s I Autocorrelation

Second-order spatial autocorrelation analysis were conducted 
for all five variables, DEM, NDVI, MNDWI, LULC, and SAVI, for Bexar 
and Dallas counties to detect the clustering propensities and hot/
cold spots across geospatial locations. All three types, inverse 
distance, inverse distance squared, and fixed distance, were tested 
to reveal the model robustness and the most optimal technique 
for spatial autocorrelation. Moran’s Index for DEM shows a strong 
positive spatial autocorrelation across all three methods (Tables 
1&2), with values of 0.69 (inverse distance), 0.78 (inverse distance 
squared), and 0.82 (fixed distance). The inverse distance method 

revealed the highest Moran’s index with a Z-score of 7.35 with a 
P-value of less than 0.05, indicating Moran’s index is significantly 
different than the expected randomness (Griffith, 2003), thereby 
revealing statistically significant spatial autocorrelation. The 
results of inverse distance and inverse distance squared showed 
a statistically significant spatial autocorrelation (P-value<0.05). 
However, the fixed distance method showed the highest Moran’s 
index (I=0.82) due to less non-homogeneity in the elevation values 
across Bexar County. Comparable results were detected for Dallas 
County with a Moran’s index of 0.43 with a P-value of less than 0.05, 
indicating statistically significant spatial autocorrelation.

Table 1: Moran’s, I value, z-score, and p-value coefficients for Bexar County, Texas.

s DEM NDVI MNDWI LULC SAVI

Inverse Distance 
Values

Moran’s Index 
0.690739

Moran’s Index 
0.253519

Moran’s Index 
0.388133

Moran’s Index 
0.201381 Moran’s Index 0.272512

z-score 8.122145 z-score 2.925978 z-score 4.244192 z-score 2.306759 z-score 3.210838

p-value 0.000000 p-value 0.003434 p-value 0.000022 p-value 0.021068 p-value 0.001323

Inverse Distance 
Squared Values

Moran’s Index 
0.781775

Moran’s Index 
0.327540

Moran’s Index 
0.438034

Moran’s Index 
0.239313 Moran’s Index 0.352232

z-score 8.400416 z-score 3.074162 z-score 3.944057 z-score 2.235016 z-score 3.378827

p-value 0.000000 p-value 0.002111 p-value 0.000080 p-value 0.025416 p-value 0.000728
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Fixed Distance Values

Moran’s Index 
0.827579

Moran’s Index 
0.186630

Moran’s Index 
0.324006

Moran’s Index 
0.143842 Moran’s Index 0.202450

z-score 7.357146 z-score 2.417691 z-score 3.904900 z-score 1.869173 z-score 2.670127

p-value 0.000000 p-value 0.015619 p-value 0.000094 p-value 0.061599 p-value 0.007582

List of Abbreviations: DEM: Digital Elevation Model; NDVI: Normalized Difference Vegetation Index; MNDWI: Modified Normalized Difference Water 
Index; LULC: Land Use Land Cover; SAVI: Soil Adjusted Vegetation Index.

Table 2: Moran’s, I value, z-score, and p-value coefficients for Dallas County, Texas.

DEM NDVI MNDWI LULC SAVI

Inverse Distance Values

Moran’s Index

0.506616

Moran’s Index

0.520591

Moran’s Index

0.492859

Moran’s Index

0.155518

Moran’s Index

0.196176

z-score

6.313416

z-score

6.435024

z-score

6.10355

z-score

2.083073

z-score

2.984458

p-value

0

p-value

0

p-value

0

p-value

0.037245

p-value

0.002841

Inverse Distance Squared Values

Moran’s Index

0.571401

Moran’s Index

0.611794

Moran’s Index

0.566116

Moran’s Index

0.331703

Moran’s Index

0.199066

z-score

5.270352

z-score

5.589394

z-score

5.184529

z-score

3.076581

z-score

1.962689

p-value

0

p-value

0

p-value

0

p-value

0.002094

p-value

0.049682

Fixed Distance Values

Moran’s Index

0.437698

Moran’s Index

0.413956

Moran’s Index

0.406534

Moran’s Index

0.000571

Moran’s Index

0.196176

z-score

6.293987

z-score

5.928479

z-score

5.824667

z-score

0.318164

z-score

2.984458

p-value

0

p-value

0

p-value

0

p-value

0.750361

p-value

0.002841

List of Abbreviations: DEM: Digital Elevation Model; NDVI	 : Normalized Difference Vegetation Index; MNDWI: Modified Normalized Difference Wa-

ter Index; LULC: Land Use Land Cover; SAVI: Soil Adjusted Vegetation Index.

However, inverse distance and inverse distance squared 
methods showed the highest Moran’s index; only the fixed distance 
method revealed the hot and cold spots of similar elevation. Inverse 
distance methods were not able to reveal significant hot/cold 
spots due to the absence of homogeneity in the elevation values 
across geospatial locations. Moran’s Index for NDVI demonstrates 
positive spatial autocorrelation across all three analytical methods 
(Table 1), with values of 0.25 (inverse distance), 0.32 (inverse 
distance squared), and 0.18 (fixed distance) for Bexar County. The 
highest Moran’s Index was observed with the inverse distance 
square method, yielding a Z score of 3.07 and a P-value less than 
0.05, suggesting a statistically significant deviation from expected 
randomness, thus confirming the geospatial clusters in NDVI 
patterns. This inverse distance squared method assigns the highest 
weights to the nearest points, thereby having more chances of 
revealing a high Moran’s index than the fixed distance where the 
weight of all the NDVI values across geospatial locations is equal 
[54]. Similarly, the highest Moran’s index (0.61) was revealed for 

Dallas County for the inverse distance squared method with a 
P-value of less than 0.05. However, the inverse distance squared 
method failed to detect statistically significant hot/cold spots.

The inverse distance squared method assumes that nearby 
ground-referenced points have a more considerable influence 
(ability to detect hot spots) on each other than distant points. 
However, the impact of revealing hot/cold spots diminishes when 
comparing geospatial coordinates of longer Euclidean distances in 
inverse distance and inverse distance square method due to the 
assumption of detecting clusters of similar values and hot spots 
for the least Euclidean distance between geospatial coordinates. 
However, fixed distance revealed statistically significant hot/
cold spots at a 95% confidence interval due to the assumption of 
equal probability of detecting hot/cold spots, unlike in the Inverse 
Distance Method. Moran’s Index for MNDWI shows a strong positive 
spatial autocorrelation across all three methods for both Bexar 
and Dallas counties. In Bexar County, the inverse distance method 
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resulted in a Moran’s Index of 0.38 with a Z-score of 4.24 and a 
P-value of less than 0.05 at a 95% confidence interval. The inverse 
distance squared method showed a higher Moran’s Index of 0.43, 
with a Z-score of 3.94 and a significant P-vale (<0.05). The fixed 
distance method revealed a Moran’s Index of 0.32, with a Z-score 
of 3.90. For Dallas County, the inverse distance method yielded a 
Moran’s Index of 0.492859, a Z-score of 6.10355, and a P-value of 0.

The inverse distance squared method showed the highest 
Moran’s Index of 0.566116, with a Z-score of 5.184529 and a 
P-value of 0. The fixed distance method resulted in a Moran’s 
Index of 0.406534, a Z-score of 5.824667, and a P-value of 0. These 
results indicated statistically significant spatial autocorrelation 
for all methods in both counties. Moran’s Index for LULC indicates 
varying degrees of positive spatial autocorrelation across different 
methods for both Bexar and Dallas counties. In Bexar County, the 
inverse distance method produced a Moran’s Index of 0.201381, 
with a Z-score of 2.306759 and a P-value of 0.021068. The inverse 
distance squared method showed a slightly higher Moran’s Index 
of 0.239313, a Z-score of 2.235016, and a P-value of 0.025416. The 
fixed distance method had the lowest Moran’s Index of 0.143842, 
with a Z-score of 1.869173 and a P-value of 0.061599. For Dallas 
County, the inverse distance method resulted in a Moran’s Index of 
0.155518, a Z-score of 2.083073, and a P-value of 0.037245. The 
inverse distance squared method showed a higher Moran’s Index 
of 0.331703, with a Z-score of 3.076581 and a P-value of 0.002094. 
The fixed distance method yielded an incredibly low Moran’s Index 
of 0.000571, with a Z-score of 0.318164 and a P-value of 0.750361.

These results revealed statistically significant spatial 
autocorrelation for most methods, except for the fixed distance 
method in both counties regarding LULC. Moran’s Index for SAVI 
demonstrated positive spatial autocorrelation across different 
methods for both Bexar and Dallas counties. In Bexar County, the 

inverse distance method yielded a Moran’s Index of 0.272512, 
with a Z-score of 3.210838 and a P-value of 0.001323. The inverse 
distance squared method showed a higher Moran’s Index of 
0.352232, a Z-score of 3.378827, and a P-value of 0.000728. The 
fixed distance method resulted in a Moran’s Index of 0.202450, a 
Z-score of 2.670127, and a P-value of 0.007582. For Dallas County, 
the inverse distance method had a Moran’s Index of 0.196176, a 
Z-score of 2.984458, and a P-value of 0.002841. The inverse distance 
squared method produced a Moran’s Index of 0.199066, a Z-score 
of 1.962689, and a P-value of 0.049682. The fixed distance method, 
matching the inverse distance method, had a Moran’s Index of 
0.196176, a Z-score of 2.984458, and a P-value of 0.002841. These 
results indicated statistically significant spatial autocorrelation for 
most methods, except for the inverse distance squared method in 
Dallas County which barely meets the threshold for significance.

Results of Linear Regression

These results pertain to the DEM analysis where sampling 
across four chains with 10,000 tuning iterations and 20,000 draw 
iterations (a total of 40,000 tuning and 80,000 draw iterations) took 
833 seconds. The rhat statistic exceeded 1.01 for some parameters, 
indicating convergence problems, and the effective sample size 
(ESS) per chain was less than 100 for certain parameters, suggesting 
insufficient sampling for reliable rhat and ESS computations. Chain 
0 reached the maximum tree depth, indicating a need to increase 
the `max_treedepth` parameter or raise the `target_accept` rate. 
Summary statistics for the parameters showed the intercept had 
a mean of -15.250, an SD of 9.938, an HDI (3%) of -29.035, an HDI 
(97%) of -0.680, an MCSE (mean) of 4.263, an MCSE (SD) of 3.193, 
and an ESS (bulk) of 7.0. The beta parameter had a mean of 0.201, 
an SD of 0.166, an HDI (3%) of 0.059, an HDI (97%) of 0.483, an 
MCSE (mean) of 0.082, an MCSE (SD) of 0.063, and an ESS (bulk) of 
7.0 (Figures 8-12).

Figure 8: Eigen-Bayesian logistic Regression analysis (DEM).
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Figure 9: Eigen-Bayesian logistic Regression analysis (MNDWI).

Figure 10: Eigen-Bayesian logistic Regression analysis (LULC).
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Figure 11: Eigen-Bayesian logistic Regression analysis (NDVI).

Figure 12: Eigen-Bayesian logistic Regression analysis (SAVI).

These results pertain to the MNDWI analysis where sampling 
across four chains with 2,000 tuning iterations and 4,000 draw 
iterations (a total of 8,000 tuning and 16,000 draw iterations) 
took 4 seconds. Summary statistics for the parameters indicated 
the intercept had a mean of -10.915, an SD of 5.496, an HDI (3%) 
of -21.170, an HDI (97%) of -2.109, an MCSE (mean) of 0.089, an 
MCSE (SD) of 0.065, an ESS (bulk) of 4115.0, and an ESS (tail) of 
4846.0, with a rhat of 1.0. The beta parameter had a mean of 2.249, 
an SD of 9.330, an HDI (3%) of -15.175, an HDI (97%) of 20.135, 
an MCSE (mean) of 0.124, an MCSE (SD) of 0.093, an ESS (bulk) of 
5701.0, and an ESS (tail) of 6086.0, with a rhat of 1.0. These results 
pertain to the LULC model analysis where sampling across four 
chains with 2,000 tuning iterations and 4,000 draw iterations (a 

total of 8,000 tuning and 16,000 draw iterations) took 4 seconds. 
Summary statistics for the parameters indicated the intercept had 
a mean of -2.063, an SD of 0.918, an HDI (3%) of -3.737, an HDI 
(97%) of -0.395, an MCSE (mean) of 0.012, an MCSE (SD) of 0.009, 
an ESS (bulk) of 6848.0, and an ESS (tail) of 5698.0, with a rhat of 
1.0.

The beta1 parameter had a mean of -7.854, an SD of 6.275, 
an HDI (3%) of -19.740, an HDI (97%) of 1.794, an MCSE (mean) 
of 0.097, an MCSE (SD) of 0.072, an ESS (bulk) of 4782.0, and an 
ESS (tail) of 4963.0, with a rhat of 1.0. The beta2 parameter had 
a mean of -8.491, an SD of 6.014, an HDI (3%) of -19.993, an HDI 
(97%) of 0.644, an MCSE (mean) of 0.086, an MCSE (SD) of 0.066, 
an ESS (bulk) of 5799.0, and an ESS (tail) of 5734.0, with a rhat of 
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1.0. The beta3 parameter had a mean of -8.058, an SD of 6.117, an 
HDI (3%) of -19.679, an HDI (97%) of 1.246, an MCSE (mean) of 
0.088, an MCSE (SD) of 0.070, an ESS (bulk) of 5852.0, and an ESS 
(tail) of 5093.0, with a rhat of 1.0. The beta4 parameter had a mean 
of -8.479, an SD of 6.020, an HDI (3%) of -19.836, an HDI (97%) 
of 0.520, an MCSE (mean) of 0.089, an MCSE (SD) of 0.068, an ESS 
(bulk) of 5556.0, and an ESS (tail) of 5440.0, with a rhat of 1.0.

These results pertain to the NDVI analysis where sampling 
across four chains with 2,000 tuning iterations and 4,000 draw 
iterations (a total of 8,000 tuning and 16,000 draw iterations) 
took 4 seconds. Summary statistics for the parameters indicated 
the intercept had a mean of -2.063, an SD of 0.918, an HDI (3%) of 
-3.737, an HDI (97%) of -0.395, an MCSE (mean) of 0.012, an MCSE 
(SD) of 0.009, an ESS (bulk) of 6848.0, and an ESS (tail) of 5698.0, 
with a rhat of 1.0. The beta1 parameter had a mean of -7.854, an SD 
of 6.275, an HDI (3%) of -19.740, an HDI (97%) of 1.794, an MCSE 
(mean) of 0.097, an MCSE (SD) of 0.072, an ESS (bulk) of 4782.0, 
and an ESS (tail) of 4963.0, with a rhat of 1.0. The beta2 parameter 
had a mean of -8.491, an SD of 6.014, an HDI (3%) of -19.993, an 
HDI (97%) of 0.644, an MCSE (mean) of 0.086, an MCSE (SD) of 
0.066, an ESS (bulk) of 5799.0, and an ESS (tail) of 5734.0, with 
a rhat of 1.0. The beta3 parameter had a mean of -8.058, an SD of 
6.117, an HDI (3%) of -19.679, an HDI (97%) of 1.246, an MCSE 
(mean) of 0.088, an MCSE (SD) of 0.070, an ESS (bulk) of 5852.0, 
and an ESS (tail) of 5093.0, with a rhat of 1.0.

The beta4 parameter had a mean of -8.479, an SD of 6.020, 
an HDI (3%) of -19.836, an HDI (97%) of 0.520, an MCSE (mean) 
of 0.089, an MCSE (SD) of 0.068, an ESS (bulk) of 5556.0, and an 
ESS (tail) of 5440.0, with a rhat of 1.0. These results pertain to the 
SAVI model analysis where sampling across four chains with 2,000 
tuning iterations and 4,000 draw iterations (a total of 8,000 tuning 
and 16,000 draw iterations) took 1 second. Summary statistics for 
the parameters indicated the intercept had a mean of -4.104, an SD 
of 1.415, an HDI (3%) of -6.788, an HDI (97%) of -1.606, an MCSE 
(mean) of 0.020, an MCSE (SD) of 0.014, an ESS (bulk) of 5457.0, 
and an ESS (tail) of 6538.0, with a rhat of 1.0. The beta parameter 
had a mean of 2.706, an SD of 8.819, an HDI (3%) of -13.591, an 
HDI (97%) of 19.706, an MCSE (mean) of 0.112, an MCSE (SD) of 
0.079, an ESS (bulk) of 6259.0, and an ESS (tail) of 7702.0, with a 
rhat of 1.0.

Eigen-Bayesian semiparametric Markovian non-
Gaussian Model

We extended an approach for estimating a series of county-level 
mixed models for determining eigen-Bayesian, semiparametric, 
eigen algorithmic random effects parameters under a random 
intercept to include standard errors; thereby including confidence 
interval. The dependent variable was the RGB Sentinel-2 signature 
storm sewer capture point Cx. quinquefasciatus larval habitat. 
The independent variables were proxy satellite indicators. The 
procedure may entail numerical integration to yield posterior 
empirical eigen-Bayesian estimates of statistically significant 
capture point sentinel sites with interrogatable signature and 
parameters; as well as their corresponding posterior standard 
errors. In this experiment we incorporate an adjustment of the 

standard error to account for the non-Gaussian variability in 
estimating the variance component of the eigen-Bayesian, semi-
parametric, Markovian, algorithmic random effects distribution 
in the interpolated storm sewer Cx. quinquefasciatus habitats. The 
final model revealed only non-zero autocorrelated coefficients.

Discussion

The RGB signature analysis of storm sewer habitats for Cx. 
quinquefasciatus, as illustrated in (Figure 1), provides critical 
insights into the environmental conditions favorable for mosquito 
larvae. The spectral profile shows a notable peak in reflectance at 
the red band (Band 4), suggesting that storm sewers with higher 
reflectance in this band may be more conducive to mosquito 
habitation. Conversely, the significantly lower reflectance values in 
the Narrow NIR (Band 8) and SWIR (Band 12) bands indicate that 
these wavelengths are less reflective in storm sewer environments. 
This spectral information aids in identifying and characterizing 
larval habitats, offering valuable data for enhancing mosquito 
control measures and predicting areas at risk for mosquito-
borne diseases. The analysis of hot and cold spots in Bexar and 
Dallas Counties reveals distinct spatial patterns. In Bexar County, 
hot spots with 95% and 99% confidence are in central and 
northeastern areas, while cold spots are in the southern region. In 
Dallas County, the NDVI-based map shows hot spots concentrated 
centrally, particularly west of the city center, with cold spots in 
the east. The DEM-based analysis indicates central clustering of 
cold spots with high confidence, while hot spots are found in the 
southern and northeastern regions. These patterns can guide 
targeted environmental management and resource allocation in 
both counties.

Second-order spatial autocorrelation analysis was conducted 
using DEM, NDVI, MNDWI, LULC, and SAVI maps in Bexar and 
Dallas counties using inverse distance, inverse distance squared, 
and fixed distance methods to assess clustering propensity and 
hot/cold spots. For DEM, strong positive spatial autocorrelation 
was observed with Moran’s Index values of 0.69, 0.78, and 0.82 for 
the three methods, respectively, in Bexar County, and 0.43 for Dallas 
County, indicating statistically significant spatial autocorrelation. 
NDVI also showed positive spatial autocorrelation, with the highest 
Moran’s Index of 0.32 for the inverse distance squared method in 
Bexar County and 0.61 in Dallas County. MNDWI demonstrated 
significant spatial autocorrelation in both counties, with the highest 
Moran’s Index of 0.43 in Bexar County and 0.566116 in Dallas 
County using the inverse distance squared method. LULC revealed 
varying degrees of spatial autocorrelation, with the inverse distance 
squared method showing the highest Moran’s Index of 0.239313 
in Bexar County and 0.331703 in Dallas County, while the fixed 
distance method showed no significant spatial autocorrelation in 
Dallas. SAVI results indicated positive spatial autocorrelation, with 
the inverse distance squared method showing the highest Moran’s 
Index of 0.352232 in Bexar County and 0.199066 in Dallas County, 
although the significance was marginal in Dallas.

These findings confirm the presence of spatial autocorrelation 
for most methods across different variables and counties. Bayesian 
logistic regression analysis was performed for the binary data of the 

http://dx.doi.org/10.33552/ABBA.2024.06.000631


Citation: Alexander M. Gambrell*, Namit Choudhari, Saurav Chakraborty, Jing Liu, Heather McDonald, Sasha Mosich, Benjamin 
G. Jacob. Employing Second Order Geospatial Autocorrelation Statistics and an Eigen-Bayesian Semi-Parametric Markovian Non-
Gaussian Model for Interpolating Culex quinquefasciatus Storm Sewer Habitats in Bexar and Dallas Counties Texas, U.S.A. Annal 
Biostat & Biomed Appli. 6(2): 2024. ABBA.MS.ID.000631. DOI: 10.33552/ABBA.2024.06.000631.

Annals of Biostatistics & Biometric Applications                                                                                                               Volume 6-Issue 2

Page 17 of 19

confidence level bin [55,56] as a dependent variable against DEM, 
NDVI, MNWI, LULC, and SAVI as covariates. Bernoulli distribution 
likelihood with a Gaussian prior was used to model the dichotomous 
dependent variable with a draw of 20000, tune of 10000, and 4 
chains. These high draws and chains were selected to maximize 
the convergence rate in the Markovian chains due to the presence 
of excess random noise [57]. However, the results indicated that 
MCMC was not able to converge in the model due to the presence 
of geospatial outliers caused by geospatial multicollinearity, non-
homogeneity, and high variance, which were not able to tease 
out at a linear level. Furthermore, the 2-dimensional logistic 
regression is based on binary data, which can give a non-robust 
output of significant and non-significant predictors due to either 
inflation or deflation of pseudo-R square values. Additionally, 
10-meter resolution sentinel data in this model may involve noises 
(geospatial multicollinearity and heteroscedasticity) and further 
increase the difficulties in convergence between different chains. 
In future research efforts, quantitative data, such as larvae counts, 
should be applied to investigate Culex habitats to provide robust 
and heterogeneous data.

In addition, images with higher resolution may increase 
heterogeneity and create robust results. The data suggest that the 
presupposed co-variances are correlated with position and non-
random aggregation of storm sewer drains. Cx. quinquefasciatus 
indexes such as this one can prove useful in identifying potential 
storm sewer aquatic larval habitats of Cx. quinquefasciatus. 
Furthermore, the identification of hot and cold spots in Dallas and 
Bexar County can prove to be useful in implementing larval source 
management. Using this model, Texas abatement districts located 
in Dallas and Bexar can begin to treat these man-made foci using 
“S&D” tactics. Consequently, the risk of human infection resulting 
from WNV will decrease as vectors for disease transmission are 
lessened. The findings in this paper indicated a strong correlation 
between values attributable to the DEM and aggregation of storm 
sewers in both Dallas and Bexar counties. Moran’s I coefficients as 
high as 0.827579 analyzed the fixed distance values in Dallas. Strong 
non-random association between aggregation of storm sewers can 
be quintessential in identifying potential hot spots and cold spots 
for storm sewer drains. Current efforts in Dallas and Bexar counties 
omit treatment of storm sewer drains from abatement practices 
which inhibits the elimination of Cx. quinquefasciatus from habitats 
completely [58]. One notable limitation of this study is the spatial 
resolution of the satellite imagery used, which may not adequately 
capture fine-scale variations in mosquito breeding habitats.

Man made storm sewer drains are only a few meters in 
distances and using 10-meter Sentinel-2 satellite imagery 
makes interpolation of points extremely difficult. This limits the 
robustness of the model to accurately predict where storm sewer 
habitats are forecasted due to spatial noise. The color of the 
storm sewers themselves proved to also generate limitations in 
the differentiation between storms sewers and other man-made 
structures of the same color such as communication wire covers 
and water main covers. Implementation of higher resolution Planet 
3-meter satellite imagery can feasibly remove these limitations 
and increase robustness of the storm sewer model. Future 

research should aim to address existing limitations and broaden 
the study’s scope to improve vector control strategies. Exploring 
other Cx. quinquefasciatus habitats such as wetland foci, drainage 
canals, and artificial water containers [59-62]. Broadening the 
habitats being modeled can result in more effective treatment 
of Cx. quinquefasciatus and potential reduction of cases of WNV. 
Subsequently, after incorporating all potential capture point 
habitats of Cx. quinquefasciatus future studies can run the model 
again but at a larger scale. Instead of just Dallas and Bexar County 
the whole state of Texas can be interpolated to find habitat points 
and also hot and cold spots. Creating a broad-based model for Cx. 
quinquefasciatus for Texas can prove useful in reducing endemicity 
of WNV in Texas.

This could reveal significant Cx. quinquefasciatus populations 
in the state and allow treatment of previously unknown habitats 
to begin. As of now, Dallas and Bexar County and their respective 
abatement districts do not account for treatment predicated on 
predictive modeling. Further studies should also go about obtaining 
satellite imagery with increased spatial resolution. Creating a 
comparative study between Dallas and Bexar counties interpolated 
points at 10-meters and 3-meters can prove useful in quantifying 
the robustness of the storm sewer model. The result of this study 
can then affect what resolution points are interpolated to reflect 
reality. Another potential future study approach involves creating 
a feedback loop using a convolutional neural network (CNN) to 
identify potential storm sewer habitats. This method would entail 
an iterative process where potential habitats identified by the CNN 
are validated, and the parameters of the interpolation algorithm 
are updated based on this validation. New points would then be 
interpolated and validated, with these new data points fed back 
into the CNN to further refine its accuracy. This feedback loop 
would continuously improve the model’s precision in predicting 
storm sewer habitats, thereby enhancing vector control strategies 
and potentially reducing the prevalence of WNV.

Conclusion

In conclusion, the findings in this study reveal previously 
unknown geolocations of Cx. quinquefasciatus larval storm sewer 
oviposition habitats. These results confirm that it is possible to 
interpolate more predicted aquatic storm sewer habitat points 
using available online spatial satellite imagery. Using second-order 
autocorrelation allows geospatially autocorrelating storm sewer 
habitats in Dallas and Bexar County, highlighting the significant 
impact of spatial autocorrelation on the interpolation of storm 
sewers. Interpolated Sentinel-2 10-meter resolution and RGB 
signatures of Cx. quinquefasciatus storm sewer variables can 
generate erroneous noisy signatures due to violations of regression 
assumptions, which may be corrected in an eigen-Bayesian eigen-
geospace. Eigen-orthogonalizable Eigen-spatial filters are useful in 
revealing the influence of non-Gaussianism, such as heterogeneity of 
variances. Markovian semiparametric non-frequentist uncertainty-
oriented models are accurate in predicting zero-autocorrelated 
georeferenceable hyper/hypo endemic geolocations compared 
to a global model. These models, as documented in the literature, 
handle interpolated erroneous non-homogeneous RGB signature 
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non-evidential uncertainty-oriented probabilities consistently 
across Bayesian eigenvector eigen-geospace.
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