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Abstract 
Dose-response model for complex systems is crucial for the treatment of diseases and drug discovery. Understanding the mechanism of drug 

action has become increasingly important due to the growth of large-scale biological data obtained through computational modelling. This study 
compared four Dose-response models namely, four parameters log-logistic model, Brain-Cousens hormesis model, Cedergreen-Ritz-Streibig modified 
log-logistic model, and Weibull distribution I to predict the best model for theophylline dosage and its corresponding physiological properties 
through sensitivity analysis and Bayesian Information Criteria (BIC). The findings revealed that Weibull distribution 1 outperformed other models 
with the least BIC value of 294.4214. Therefore, Weibull distribution 1 is the best model for modelling theophylline drug. Also, a sensitivity analysis 
was carried out that shows the robustness and optimality of the model. Weibull, I model shows a significant variation of the model fit with a sharp 
decline at high dose. Therefore, Weibull I model is more sensitive to model Theophylline drug data.
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Introduction

Dose-response modeling is a crucial tool in various fields, 
including toxicology, pharmacology, and environmental science, 
[1] as it enables us to understand how a substance’s dose and its 
biological response relate to each other. Theophylline, an example 
of a substance that requires dose-response modeling to maximize 
therapeutic efficacy and reduce potential toxicity, is a medication 
that is frequently used to treat respiratory problems. Theophylline 
is a widely used drug for the treatment of respiratory diseases, such 
as asthma and Chronic Obstructive Pulmonary Disease (COPD). 
However, the optimal dosage of theophylline for individual patients 
remains a challenge due to the complex dose-response relationship. 
Different models have been proposed to describe theophylline drug 
data, but dose-response models have suffered a major setback in 
this regard. Therefore, this study attempted to apply four dose-
response models and evaluate the sensitivity of these models to the 
theophylline drug data.

 

The proposed four dose-response models are four parameters log-
logistic model, Brain-Cousens hormesis model, Cedergreen-Ritz-
Streibig modified log-logistic model, and Weibull distribution I. The 
four-parameter log-logistic model, which has been widely applied 
in dose-response analyses, is characterized by its ability to capture 
various shapes of dose-response curves. This particular model 
has been used in studies on Paralytic Shellfish Poisoning (PSP) 
in humans [2] and its application to theophylline dose-response 
analysis can provide valuable insights into the drug’s efficacy and 
potential adverse effects. The emergence of the Brain-Cousens 
hormesis model as a dose-response model has gained attention in 
recent years. It suggests that low doses of a substance may have 
a stimulatory effect, while higher doses may lead to inhibitory 
responses. This model has been applied in different fields, including 
radiation therapy and environmental science [3]. In the context of 
theophylline, exploring the potential hormetic effects of the drug 
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can provide valuable information on its dose-dependent benefits 
and potential risks [4].

Another dose-response model is Cedergreen-Ritz-Streibig’s 
modified log-logistic model which is a variation of the four-
parameter log-logistic model. This was specifically designed to 
account for non-monotonic dose-response curves. The model 
has been used in the analysis of Escherichia coli O157 outbreaks, 
incorporating data from both foodborne and environmental 
sources [5]. Applying this modified model to theophylline dose-
response modeling can help to understand the drug’s complex 
biological effects and optimize its therapeutic use. Moreover, 
Weibull distribution I as a dose-response model is a probability 
distribution commonly used in survival analysis. It has also been 
applied in dose-response modeling, as it enables it to estimate other 
crucial quantities, such as the median Effective Dosage (ED50). In 
the context of theophylline, the Weibull distribution can provide 
insights into the drug’s potency and optimal dosage range [6].

Recently, there has been renewed interest in the 4PL model [7]. 
It was suggested that to completely characterize the functioning of 
psychopathology items, a four-parameter model is needed. This was 
later confirmed by the authors [8]. The 4PL model has been found 
to be effective in computerized adaptive testing as well [9]. The 4PL 
model’s parameter estimation is a challenging task, [10,11], which 
is why it has been largely ignored for a long time. However, some 
recent literature has used a Bayesian approach to estimate item 
parameters and [12], one interesting work utilizes a mixture model 
formulation and prior distributions for the parameters [13]. One of 
the earliest and most well-known dose-response models that allows 
for hormesis and assesses its significance is the Brain-Cousens 
model. It has been successfully used in several plant studies. [14-
17], The model has limitations which reduce its robustness and 
flexibility when applied to real data [18]. Confined to values larger 
than one, the model can be problematic when fitting curves with 
inherently low slopes.

Based on the fact that we could not find significant hormesis 
modelling in 51 dose-response data sets of herbicide toxicity with 
the Brain and Cousens model. This study aims to comprehensively 
analyze and compare the efficacy of theophylline drug using dose-
response models to determine the optimal dosage for four dose-
response models. The result of the findings will be used to evaluate 
the sensitivity of the models and compare the performance of 
the four models to predicting theophylline drug responses. The 
rest of the article is arranged as follows; Section one covers the 
introduction of the study, background of the study and review of 
related literatures. Section two discussed the research and methods 
used, method of data collection, method of data analysis, and model 
specification while section three deals with the analysis of the data. 
It also contains the results and a discussion of the study. Finally, 
section four comprises of summary and conclusion.

Research and Methods

The analysis of the data was conducted by utilizing 
R programming language. Secondary data was used for 
the study and was obtained from Kaggle website at https://www.

kaggle.com/datasets/shanmdphd/theophylline The theophylline 
data frame has 132 rows and 5 columns of data from an experiment 
on the pharmacokinetics of theophylline. Twelve subjects were 
given oral doses of theophylline then serum concentrations were 
measured at 11 time points over the next 25 hours. This data frame 
contains the following columns:

a) Subject: a factor identifying the subject.

b) Wt: Weight of the subject (kg).

c) Dose: Dose administered to the subject (mg/kg).

d) Time: Time since drug administration when the sample was 
drawn (hours).

e) Conc: Theophylline concentration in the sample (mg/L).

Dose-Response Model

Considering a set of n dose-response curves and assuming 
that, apart from a parameter vector that might vary depending 
on the curve, each dose-response curve’s reaction follows a non-
linear curve given by the function f. Therefore, the mathematical 
expression relating to the dose-response curve is obtained as (1)
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Where y is the response, x  is the dose, C is the lower limit, D is 
the upper limit, b = slope and 50l  is the dose giving a 50% response.

Models

The four models for sigmoidal dose-response curves widely 
employed in this study to fit the most suitable model for the data 
are explained as follows.

The Four-Parameter Logistic Function is given as (2)
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Where b denotes the relative slope around e, c is the lower limit, 
d is the upper limit and e also denoted 50% effective dose (ED50) 
explained vividly the interpretation of the parameters to (2). The 
model showed that the logistic function is symmetric around e 
with two slightly different parameterizations, one where ED50 is a 
model parameter, that is e in (2), and another where the logarithm 
of ED50 denoted by e , is a model parameter as in (3)

( ) ( ) / ((1 exp ( (log ( ) )) )f x d c b x e= − + −   (3)

Brain-Cousens Hormesis Model

Brain-Cousens modified log-logistic models for describing 
u-shaped hormesis are given as (4)
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Where b denotes the relative slope around e, c is the lower limit, 
d is the upper limit, e denoted 50% effective dose (ED50) and f is 
the size of the hormesis effect. The larger the value, the larger the 
hormesis effect. 0f = corresponds to no hormesis effect, and 
the resulting model is the four-parameter log-logistic model. This 
parameter should be positive for the model to make sense.

Cedergreen-Ritz-Streibig Modified Log-Logistic Model

The Cedergreen-Ritz-Streibig modified log-logistic model for 
describing (inverse u-shaped or j-shaped) hormesis is given as (5)

exp( 1/ )( )
1 exp ( log( ) log( ))

d c f xf x c
b x e
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= +

+ −
 (5)

Where b denotes the relative slope around e, c is the lower limit, 
d is the upper limit, e also denoted 50% effective dose (ED50), f is 

the size of the hormesis effect and α is the scale parameter, also 
called the characteristic life parameter.

Weibull Distribution I

The Weibull distribution I is a continuous probability 
distribution. It models a broad range of random variables, 
largely like a time to failure or time between events. The Weibull 
distribution I is given by the expression (6)

( ) ( )( ) 1exp ; , 0x xf x r r xγ µ µ µ γ α
α α α

−  −    = − − ≥ >        
 (6)

Where γ is the shape parameter, also called the Weibull slope 
or the threshold parameter, α is the scale parameter, also called the 
characteristic life parameter and μ is the location parameter, also 
called the waiting time parameter or sometimes the shift parameter.

The standard Weibull distribution is derived, when 0µ =  and 
1α = , then, (6) reduced to (7)

( ) exp( ) , 0; 0f x x x x yγγ= − ≥ >  (7)

Table 1: Model functions and corresponding name of some of the most important built-in models available in drc.

Model Model Function/Equation Function in drc

Four Parameters Model s l logistic ()

Brain-Cousens Model l logistic ()

Cedergreen-Ritz-Streibig Model cedergreen ()

Weibull Distribution I Weibull 1 ()

The parameters c and d denote the horizontal asymptotes or 
limits, whereas the parameter b is the relative slope at the inflection 
point of the resulting dose–response curve. The parameter e 
corresponds to the dose where the inflection point is located. The 
original, untransformed dose is denoted x throughout.

Data Analysis, Result and Discussion

The analysis was carried out using the R programming language. 
The variables of data for the analysis are drug dose (in mg/kg) and 
concentration (mg/L). Figure 1 shows the scatter plot; the study 
has a discrete view of what the drug response is. However, we need 
a continuous representation of the drug-response relationship, so 

we can obtain a full view of the response caused by the drug at any 
given concentration. To obtain this continuous view, we need to use 
a ‘curve fitting’ algorithm. A curve fitting algorithm optimizes the 
parameters of a curve or function so that it ‘adjusts’ or ‘fits’ to the 
data as closely as possible. With the adjusted curve, we will be able 
to interpolate and extrapolate response values, hence we will know 
the response at any given drug concentration. Table 2 presented 
the analysis of the four models considered namely, four-parameter 
log-logistic model, Brain-Cousens hormesis model, Cedergreen-
Ritz-Streibig modified log-logistic model, and Weibull distribution I 
(Figure 2). Figure 3 did not show any significant variation when we 
considered the log scale of the data. 

Table 2: Estimate the optimal parameters.

Parameters Four Parameters Model Brain-Cousens Model Cedergreen-Ritz- Model Weibull Distribution I

c 4.614005 4.702493 4.9603994 4.716738

d 9.956973 7.228042 15.4106651 9.332089

b -7.309608 -14.923844 9.7505368 -5.158644

e 6.981121 5.856925 0.1122665 6.297846

F 16.105122 -12.8902890

a 10.7081984
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Figure 2: Observed dose-response curves for the four-parameter model (solid), brain-cousens model (red dashed), cedergreen-ritz-streibig 
model (blue dotted), and Weibull distribution model (green longdash).

Figure 1: The Scatter plot of Theophylline showing the concentration and dose response.

Figure 3: Observed models with log scale fitted to the dataset.
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Table 3 revealed that Weibull distribution 1 outperformed 
other models with the least BIC value of (294.4214). Therefore, 
Weibull distribution 1 is the best model for modelling theophylline 
drug. Figure 4 shows the sensitivity change in the response when 
the parameter value is perturbed by a small value. Parameter D has 
the highest sensitivity, so it will have the highest influence on the 
response. Parameter D has the highest sensitivity at low doses, so it 
will be important to have enough samples at low doses. BIC lower 
is for Weibull I model. In the graph, we can see that the Cedergreen-

Ritz-Streibig Modified Log-Logistic Model and the Brain-Cousens 
hormesis model give very similar fits though the Weibull I model 
was added to ascertain the best model fit which shows a sharp 
decline at a high dose. Weibull, I model shows significant variation 
of the model fit. When given the choice between a simpler model 
and a more complex model which gives almost the same fitted 
values, we choose the simpler model. Therefore, Weibull I model is 
more sensitive to model Theophylline drug data.

Figure 4: Local sensitivity analysis.

Table 3: The model fits based on BIC value.

Dose-Response Models BIC

Four Parameters Log-Logistic Model 294.8986

Brain-Cousens Hormesis Model 299.32

Cedergreen-Ritz-Streibig Modified Log-Logistic Model 306.3847

Weibull Distribution I 294.4214

Summary and Conclusion

Summary

Theophylline is a medication that is used to treat asthma 
and chronic obstructive pulmonary disease (COPD) by relaxing 
the muscles of the airways. It is a bronchodilator, which means 
it opens up the airways in the lungs, making it easier to breathe 
and preventing wheezing and shortness of breath. There are four 
different models that can be used to describe the dose-response 
relationship of theophylline. This study compared four Dose-
response models namely, four parameters log-logistic model, 
Brain-Cousens hormesis model, Cedergreen-Ritz-Streibig modified 
log-logistic model, and Weibull distribution I to predict the best 
model for theophylline dosage and its corresponding physiological 
properties through sensitivity analysis and Bayesian information 

criteria (BIC). The findings revealed that Weibull distribution 1 
outperformed other models based on BIC model comparison with 
the least BIC value of 294.4214. Therefore, Weibull distribution 1 is 
the best model for modelling theophylline drug. Also, a sensitivity 
analysis was carried out that shows the robustness of the model. 
Weibull, I model shows a significant variation of the model fit with 
a sharp decline at high dose. Therefore, Weibull I model is more 
sensitive to model Theophylline drug data.

Conclusion

In this study, four models were evaluated to fit the dose-
response data for theophylline. All four models provided a good 
fit, but the Weibull distribution 1 was found to be the best one 
to describe the data. This is because it is the only model that can 
accurately capture the hormetic effect of theophylline.
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