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Abstract 
Supervised feature selection methodologies for quantitative biological data traditionally select only the top few biomarkers, forcing the 

comparison into two or more groups, and disposing of many interesting correlated features that may provide more information on the disease process. 
Here, we present an unsupervised feature selection and prediction algorithm (FSPmix), which investigates the univariate mixture distributions of 
quantitative data in order to identify potential disease group classification and rank selected features by order of importance. In-built into the 
FSPmix algorithm is a parallelized work flow enabling analyzes of small to large scale data. Validated on 20 simulated features (sample size N= 200) 
and accounting for underlying confounding covariates, the performance of our algorithm selected similar features by order of importance as other 
supervised feature selection alternatives; Random Forests, LASSO and generalized boosted regression models. Using this method on our motivating 
data set (72 human brain regions of interest, PET MR from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, N=850), we found 46 
regions that supported two hidden groups and selected features similar to supervised alternatives. Furthermore, the FSPmix predictions had similar 
predictive accuracy to unsupervised k-means clustering. This novel algorithm was able to detect underlying groups in both simulated and real 
data scenarios. FSPmix showed comparable predictive capability with unsupervised clustering alternative as well as comparable feature selection 
performance with three supervised classification algorithms, making it an ideal and scalable exploratory tool for binary response data.

Keywords: Classification & prediction algorithm; bootstrap; feature selection; parallelised computing; importance feature ranking

Received Date:  December 19, 2023

Published Date: January 03, 2024

*Corresponding author: Marcela Cespedes CSIRO Health and Biosecurity/Austral-
ian e-Health Research Centre Level 5, UQ Health Sciences Building, 901/16 Royal 
Brisbane and Women’s Hospital, Herston, Queensland 4029, Australia

Introduction

Supervised and unsupervised machine learning algorithms 
have been extensively applied in medical and epidemiological 
settings [1,2]. A long-pursued goal in medical research is the 
development of statistical approaches to identify and model key 
features associated with disease phenotypes, as well as to identify 
patient subgroups which explain observed heterogeneities in 
complex diseases [3]. Supervised learning approaches including 
tree-based methods such as random forests [4], generalized boosted 
regression models [5] and parametric regression models such as the 
least absolute shrinkage and selection operator, otherwise known 
as LASSO [6], are frequently used approaches which have been 
applied to identify key features pertaining to complex diseases and 
medical applications [7,8]. Alzheimer’s disease (AD) is a complex 
neurological disorder and is the most common form of dementia 
with no known cure. For this reason, extensive research is aimed 
at early detection, and establishing a better understanding of the 
biological, morphological brain features, demographic and lifestyle 
factors associated with the disorder.

 

One of the key and earliest biomarkers of AD is the deposition of 
beta-amyloid (β-A) protein within the cortex tissue, which is most 
accurately measured by Positron Emission Topography (PET) 
imaging. As the increase in (β-A) can occur up to two decades in 
advance prior to the onset of cognitive symptoms, the identification 
of key brain cortical regions which are affected by the gradual 
accumulation of A prior to or in the early stages of the disease 
remains difficult to identify [9]. Supervised statistical approaches 
have been vital to identify key features associated with AD in 
small- and large-scale clinical data sets. For example, the work 
by [10] utilized RF to detect individuals who were susceptible to 
becoming A accumulators using cerebrospinal fluid, demographic 
and cognition measurements. In a large-scale analysis of single 
nucleotide polymorphisms associated with AD, [11] applied LASSO 
regression using specific screening rules to analyze millions of 
potential features to find a potential genetic link to AD. See [12] for 
further examples of supervised and unsupervised machine learning 
applications in medical imaging related to AD.
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An underlying requirement for all supervised approaches 
is their dependence on the known response. In the instance of 
early AD detection research, it is possible for pre-symptomatic 
individuals to have positive disease pathology markers prior to 
clinical diagnosis. In the instance when disease groups remain 
unknown, unsupervised algorithms become a popular alternative. 
Unsupervised clustering algorithms such as k-means clustering 
[13], are frequently used to identify hidden sub-populations by 
dividing the observations into groups or clusters by minimizing 
the within cluster variation. However, unlike their supervised 
algorithm counterparts, one of the main task of unsupervised 
methods is to group all observations into clusters and not facilitate 
feature selection, which is often available in supervised approaches. 
An alternative approach to identify potentially hidden disease 
groups as well as feature selection with respect to these groups is 
needed in order to provide preliminary and exploratory insight into 
complex diseases.

Furthermore, as the scale of medical data can range from small 
to quite large [14,15], a desirable feature for such an approach 
is to be scalable to facilitate the analysis of a large scope of 
features. Methodologies which are scalable are a desirable trait 
in large medical data applications such as bioinformatics [16], 
epidemiology [17] and medical imaging [18] to name a few. In this 
work we propose an unsupervised feature selection and prediction 
algorithm, which uses Gaussian mixture models to identify and 
classify hidden disease and non-disease groups, and rank features 
by order of importance. We term this new approach FSPmix. 
FSPmix first identifies features which supports the presence of two 
hidden disease and non-disease groups, and then classifies each 
observation into one of three groups: A or B to denote disease or 
non-disease groups respectively, as well observations which remain 
unclassified (group C) if their observed value falls within the group 
separation criteria. Our FSPmix algorithm then ranks selected 
features by order of importance, in a similar manner to supervised 
alternatives such as RF. This enables the FSPmix to aggregate 
hidden disease group detection and combines classification (like 
unsupervised approaches) with feature selection (like supervised 
methods).

For a thorough assessment of this work, we perform two 
simulation studies and compare the performance of the FSPmix 
with both the known solution, and other well-known supervised 
and unsupervised algo-rithms. In a similar manner we apply the 
FSPmix on case study data, to identify hidden groups of those 
with or without amyloid burden and again compare our results to 
several supervised and unsupervised approaches. The layout of this 
paper is as follows. The Data Section describes the motivating case 
study considered in this work, which is the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) study, [19]. Section titled ‘FSPmix 

unsupervised feature selection and prediction using mixture models 
describes our unsupervised feature selection algorithm including 
our approach for validating the methodology via a simulation study 
and comparison with three supervised feature selection algorithms 
(RF, LASSO and GBM) and classification predictive performance 
compared with an unsupervised classification (k-means) method. 
‘Results Section pertains to simulated and case study results and 
and concluding remarks of our work is presented in the Discussion 
Section.

Data

In this paper, we analyze both simulated data as well as data 
from the ADNI study. Data used in the preparation of this article 
was obtained from the ADNI database (adni.loni.usc.edu). The 
ADNI study was launched in 2003 as a public-private partnership, 
led by Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), PET, other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) and early AD. In 
this work we used florbetapir PET neuroimaging to measure the 
amount of A protein by the standardized uptake value ratio (SUVR) 
at the region of interest (ROI) level defined by Desikan atlas and 
included the amygdala and the hippocampus ROIs. Refer to [20,23] 
for further description of ADNIs image processing, cerebro-spinal 
fluid (CSF) collection and additional ADNI protocols. See Appendix 
A.1 for a full list of ROIs used in this work.

Our FSPmix algorithm was applied to 72 SUVR ROI estimates 
on a subset of 853 individuals at baseline, which include 266 
cognitively normal (CN), 440 MCI 147 AD participants. While the 
FSPmix is an unsupervised algorithm, in order to compare its 
feature selection capability with other supervised approaches, we 
define the following disease and non-disease groups: participants 
with a global SUVR value of less than 0.8724 and a CSF A 42 value 
greater than 192 pg/ml were considered to be pathology negative 
(Response = 0), while participants with a global SUVR value of 
greater than 0.8724 and a CSF A 42 value less than 192 pg/ml were 
considered to be pathology positive (Response = 1).

FSPmix: Unsupervised Feature Selection and Prediction 
Using Mixture Models

Our FSPmix algorithm can be formulated by the pseudocode 
shown in Algorithm 1. Our approach utilizes a combination of 
mixture models models in-conjunction with bootstrapping allowing 
our semi-parametric approach to handle a range of continuous 
feature characteristics and classify, where possible each feature 
into two groups: disease and non-disease groups.
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We now describe in detail each of the steps. Once selected 
features, preferably with the highest variation, are chosen and 
processed as described in Section 4.3, the first step of Algorithm 1 
is to fit a simple linear regression for each feature ( )Y  in order to 
take into account the potential variation explained by confounding 
covariates ( )X  of the form Y X β ε= + . This is particularly 
important when considering features which are diagnosis specific, 
for example, AD individuals in general have accumulated large 
quantities of amyloid deposition compared to MCI individuals. The 
residuals of the model ( )ε  are retained for each feature and used in 
the subsequent step. Step 2 of Algorithm 1 utilizes parallelization 
in order to reduce computational time. This is particularly useful in 
order to scale up our algorithm to accommodate for large data sets. 
For each set of feature residualsε , N bootstraps are performed 
which sampled the data with replacement, and a two-component 
mixture model of the form.

2 2
1 1 1 2 2 2( ) ( | , ) ( | , )g f fε π ε µ σ π ε µ σ= +  (1)

is fitted. Expression (1) includes two weights with 1 20 , 1π π< <
satisfying 1 2 1π π+ = . Probability densities 2

1 1( | , )f ε µ σ and 
2

2 2( | , )f ε µ σ are Gaussian distributions with parametersµ and
2σ respectively. To implement, model ( )g ε is estimated using 

normalmixEM function from the mixtools R package [24].

The intersection of both Gaussian distributions,
eT , is estimated 

and the component means 1 2( , )µ µ are retained for each bootstrap. 
In order to avoid label switching problem [25] in our computations, 
we define the component means such that 1 2µ µ< . While 
there can be more than one intersection between two Gaussian 
distributions, our intention is to find the intersection between the 
two component means as a measure of separation between the 
two groups. The difference of the log-densities in (1) becomes a 
quadratic form, and after algebraic manipulation the value of eT  is 
found by finding the roots of the quadratic in the real domain. Over 
all bootstrap samples for every feature, the them ( )eT and standard 
deviation ( )

eTσ of vector eT are retained and used to determine the 
interval 

_ _
( , )

e e
e eT TT Tσ σ− + as shown in Step 6 of Algorithm 1. 

The mean of the component means 
_

1µ  and 
_

2µ  is also computed. By 

bootstrapping each feature, we attain an estimate on the variation 
of the separation value eT ; for further information on bootstrap 
approaches see [26].

Step 7 of Algorithm 1 utilizes the information from Step 6 and 
classifies each feature as potentially having two hidden groups if 
the condition 

_ _ _ _

1 2,
e e

e eT TT Tµ σ σ µ< − + < is satisfied. This suggests 
that the difference in the meaning of the mixture component means 
is substantial enough to strongly support the presence of two 
groups in a particular feature. For those features which support 
two hidden groups, observations are classified into either group 
A denoting lower feature values, group B denoting higher feature 
values or group C, which are those observa-tions which remain 
unclassified. In Step 9 of Algorithm 1, an observation is assigned to 
group A if their value is less than 

_

e
e TT σ− , likewise an observation 

is assigned to group B if there value is greater than
_

e
e TT σ+ . 

Observations whose value lies in the range of 
_ _

,
e e

e eT TT Tσ σ− + are 
closed as group C and they are considered not to fit to either group 
A or B. As the algorithm in this work is intended for exploratory 
purposes, a conservative approach is taken on both identifying 
which features support two hidden groups, as well as the prediction 
of each observation groups (A, B or C). This is particularly useful in 
large data settings where potentially thousands of features could be 
explored and not all predicted observations easily align into groups 
A or B.

Steps 12 and 13 of Algorithm 1 pertain to two further analyzes 
of features which are conditional on their predicted classification of 
groups A, B or C. The first analysis pertains to ranking all classified 
features in order of their importance, defined as the separation 
magnitude /

eTµ σ∆ ; where µ∆  is the difference of means of the 
component means 

_ _

12( )µ µ− which is divided by the standard 
deviation of the separation interval, eTσ . Large values of the ratio 

/
eTµ σ∆ denote that there is a large difference of mean of the 

component means and/ or 
eTσ  is substantially small. This suggests 

a particular feature strongly supports two distinct and well-
defined groups (A and B) which also results in a small number of 
observations in group C. On the contrary at the other extreme, if the 
ratio /

eTµ σ∆ is small, then this is due to either a small difference 
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in the mean of the component means and/ or a large value of 
eTσ  . 

Features with small /
eTµ σ∆ values denote poorly separated groups 

A and B and as a result tend to have many observations in group 
C. The second post-analyze pertains to determining weighted 
predictive disease probabilities based on the top K features as 
ranked by the order of importance.

The quasi-gold standard (comparative feature) is the feature 
with the highest importance value /

eTµ σ∆ and the predictive values 
(groups A and B) of this feature are then used to compare with 
group predictions for each of the top 1K − features, where the value 
of 2K > is determined by the user. For example, if 10 out of 100 
features were shown to have very large importance values, then the 
user may wish to investigate how well the predictive disease and 
non-disease (A and B) groups align with the quasi-gold standard 
(top ranked feature). Each predicted observation for the top 1K −  
features is assigned a probability value of zero if an observation in 
the quasi-gold standard feature and feature of interest is predicted 
to be in group A. A probability of 0.5 is assigned if there is a 
mismatch of group A and B classification between the quasi-gold 
standard and a feature of interest, and finally an observation is 
assigned a probability of one if the predicted observation in both the 
quasi-gold standard and feature are both in group B. The average 
of these value are taken for each observation, to get a weighted 
probability on how well they correspond to group A (if many of the 

1K −  features support this predictive value, then majority of the 
probabilities will tend towards a predicted probability of zero) or 
alternatively, how well they support a prediction group of B, then 
these weighted probabilities will tend towards one.

Algorithm 1 was implemented in R using statistical packages 
mixtools, reshape2 and dplyr. All visualizations of simulated and 
real data analyze used R package ggplot2. Our feature selection 
algorithm is available as an R package FSPmix which is available 
in the GitHub (https://github.com/MarcelaCespedes/FSPmix). In 
order to rigorously assess the performance of the FSPmix in terms 

of performance and scalability in a controlled setting, we performed 
two simulation studies. The scope of simulation study I is to assess 
the predictive performance of FSPmix on a small set of simulated 
data which is representative of a wide range of real life like scenarios 
and includes simulated features which are easily identified as well 
as challenging features. For comparison with other well-known 
supervised and unsupervised algorithms, in simulation study I 
the predictive performance of FSPmix was compared to k-means 
clustering (unsupervised classification), and the feature selection 
from FSPmix was compared to three supervised alternatives, 
RF, LASSO and GBM. The scope of the second simulation study 
is to assess its Parallelized workflow performance on a large set 
of synthetic data and determine whether FSPmix is a scalable 
algorithm.

Results

Simulation Study I

To assess the performance and further validate the FSPmix 
approach in a controlled setting we conducted two simulation 
studies. The aim of the first study was to assess the sensitivity and 
specificity of the FSP algorithm on 20 simulated normalized features 
as shown in Figure 7 in Appendix A.2. Ten left skewed features 
were simulated with initial groups far apart (Feature 1) and slowly 
increasing the overlap of the two groups to a complete overlap by 
Feature 10. Similar approach was undertaken for the right skewed 
features, with Feature 11 having the best separated groups, and 
Feature 20 pertaining to distributions which were overlapping. 
Data was generated from univariate Gaussian distribution with 
different means and variance values. A further assessment on the 
performance of the FSPmix compared the importance ranking of 
simulated features to those of the three supervised approaches: 
RF, LASSO and GBM. The FSPmix sensitivity and specificity were 
assessed over all 20 simulated features, as shown in Figure 1.

Figure 1: Sensitivity (red) and specificity (blue) scatter plots for simulated Gaussian Features 1 to 20 (left to right). An optimal performing 
classifier would have a specificity and sensitivity greater than 0.9.
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True positive classifications denoted by group A (sensitivity) 
were summarized as the percentage of classifications which were 
correctly identified. Likewise, true negative rate (specificity) was 
summarized by the proportion of group B classifications that were 
correctly identified by FSPmix. A binary classifier which has perfect 
recovery of the solution will have both sensitivity and specificity 
percentages close to one, and alternatively a poor classifier will 
have these percentages close to zero. In general, binary classifiers 
will have a trade-off between optimal specificity and sensitivity. 
As expected, the FSPmix has optimal performance at simulated 
Features 1 and 11, with both sensitivity and specificity greater than 
0.9. The performance of the FSPmix begins to drop as the groups 
become increasingly overlapping, with the worst performance 
observed as Features 10 and 20 (the highest overlapping synthetic 
features). We note, that due to the nature of the classification of 
groups (A or B) as described in Section 3, depending on whether 
the data is left or right skewed, the FSPmix will show either 
consistently high or low sensitivity and specificity, favoring the 
set of observations from the mixture component with the lowest 
variance.

The predictive performance of the FSPmix was compared to that 
of k-means clustering (with k = 2 clusters) on the same simulated 
data, refer to Figure 9 in Appendix A.2 for full results across all 
20 features. While k-means clustering showed near perfect either 
sensitivity or specificity depending on whether the feature was 
left or right skewed respectively (similar to the FSPmix results), 
the alternative specificity or sensitivity value for each feature was 
lower than 0.8, indicating that overall, the predictive performance 
rate was slightly lower than those from the FSPmix algorithm for 

this simulation study. RF, LASSO and GBM were used to identify and 
rank simulated features by order of importance (results not shown) 
and these results were compared to those features ranked by the 
FSPmix algorithm (see Appendix A.2 Figure 8). We found that the 
four algorithms showed concurrence in selecting features 3, 4, 5, 6, 
7, 8,11, 12, 13, 14,15, 16, 17 and 18 as those being ranked higher 
than the more complex features 9, 10, 19 and 20. We note that 
in this particular simulation study, whilst Features 1 and 2 were 
simulated as having the groups with the highest separation, FSPmix 
assigned them both small importance values.

This could be due to the variation in the simulation study, 
of note LASSO did not select Feature 1 as the highest ranked 
and Feature 2 was ranked 9th out of 20. Whereas RF and LASSO 
both selected Features 1 and 2 to be among the most important 
features. Figure 2 shows the weighted predictive probabilities for 
observations which were predicted as either group A (probability 
= 0) or group B (probability = 1) for the top 7K =  features. As the 
user may set K to be any number of features the FSPmix supported 
the presence of two groups, in this simulation study, we let 7K = , 
as the importance ranking plot in Figure 8 in Appendix A.2 showed 
a slight distinction between the separation ratio of features with 
high values than those with lower values. The top seven features 
in order of importance values were Features 4,13,15,3,11,12,16. 
With Feature 4 being the quasi-gold standard, the concurrence of 
the predicted groups (A or B) aligning with the group predictions 
with the other six features is strongly supported. This is evident by 
the high densities at the probability extremes at zero and one as 
shown in Figure 2.

Figure 2: Predictive probability density plot for the top K = 7 selected features from the predictive results in simulation study I.
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A low-density value at the probability of 0.5 suggests that 
there was little discordance in the predicted A and B groups for 
these top seven features. While group classification from weighted 
probabilities (group A   probability of zero and group B   
probability one) provide a level of uncertainty, to further assess 
the predictive performance of this analyzes, we re-classified each 
observation with group A being re-defined as those probabilities 

0.5< , and group B re-defined as those observations with 
probabilities 0.5≥ , and compared these predictions with the ground 
truth. This pooling of information from several features, rather than 
prediction to each feature (which may vary between features) may 
provide a more robust alternative approach to identify disease 
and non-disease groups. We found that this simulation study, our 
results improved prediction measures with a specificity of one 
and sensitivity of 0.964 when group prediction was derived from 
weighted predictive probabilities, highlighting the benefits of this 
additional analyzes.

Simulation study II

The application of the FSPmix algorithm is intended as an 
exploratory tool on biological medical data. Alternative applications 
of the FSPmix include the field of genomics and microarray data, 
typically where the number of features is often greater than the 
number of observations. In this instance scalable algorithms are 
essential in order to broaden their application to both small and 
large data sets. For this reason, we investigated the performance 
of the FSPmix algorithm on a large scale set of 1,000 synthetic 

normalized gene expressions, with hidden disease and non-disease 
groups. Synthetic data was generated in a similar manner to 
simulation I as shown in Figure 10 in Appendix A.2. Groups A and 
B consisted of hundreds of heavily overlapped left (gene.423) and 
right (gene.161) skewed groups (variance components generated 
from a uniform distribution), in addition to data generated with 
the same variance (value of 0.3) but different means (gene 812 
for example). As each feature required 500N =  bootstraps, this 
second simulation study was performed on a High-Performance 
Computer (HPC) cluster.

Depending on the computational resources available, we 
found that the computation time taken is greatly reduced when 
multiple CPUs are allocated to running the FSPmix algorithm. In 
this instance, it took approximately 1.5 hours to run the FSPmix on 
1,000 simulated genes using 10 central processing units (CPUs). It 
would have taken considerably longer should this simulation study 
be performed in series (single CPU), nonetheless, in this instance 
for this simulation study we validated the need to use parallel 
computing to deliver a scalable algorithm. The FSPmix algorithm 
identified 737 simulated genes supporting two hidden groups out 
of a total of 1,000 simulated genes; the FSPmix did not support 
two groups on 263 genes. Upon investigating the genes which 
the FSPmix was unable to classify, we found that they had similar 
densities to a low variance unimodal distribution, where a two 
component, mixture model would be unsuitable to model such a 
data set. Figure 3 shows the specificity (blue) and sensitivity (red) 
for the three different types of simulated genes.

Figure 3: Predictive specificity and sensitivity for the 737 classified genes (out of 1,000). Performance was assessed on left (top left), right (top 
right) simulated skewed genes with various level of overlap, as well as simulated Gaussian genes simulated with different component means 
and same variance (bottom). On all plot’s, highly skewed genes are denoted with low x-axis values, and highly overlapping groups which are 
harder to distinguish the two hidden groups have higher x-axis values. Black vertical line shows performance of 90% sensitivity and specificity.
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There is a reduction in sensitivity or specificity contingent 
on which way the simulated data was skewed, whether it was 
left or right skewed. Regardless of their distribution, the FSPmix 
showed excellent performance on highly skewed genes with both 
specificity and sensitivity greater than 0.9. However, as the groups 
start to merge and become overlapping, simulating a more life-like 
scenario, there is a drop in performance, which is expected, as a 
limitation of the FSPmix, is its inability to identify hidden groups on 
unimodal distributed data. Interestingly we see that on simulated 
data which was generated by Gaussian distributions with different 
means but with the same variance (non-skewed data), we see that 
the performance decreases in a non-linear manner as the two 
groups increasingly become overlapping, eventually resulting in a 
long-tailed unimodal distribution (for example gene.325 in Figure 
10).

Application to ADNI Case Study

In accordance with Step 1 of Algorithm 1, we first fitted a linear 
regression to account for variables which could help explain the 
variation in each set of ROIs. Covariates used in the regression 
model include gender, diagnosis, age, and apolipoprotein 4ε  
carrier and non-carrier status. The residuals of the regression were 

then retained and those observations for each ROI which supported 
two groups were classified A, B or C. Amyloid negative participants 
were those participants with the least amount of global SUVR and 
high CSF 42Aβ . In this study data, we expect to see some level of 
SUVR over all the regions for all participants, however only those 
participants who are on the AD pathway may have differential 
amyloid levels in specific ROIs. The FSPmix identified 46 out of 
72 ROIs which supported two hidden groups within the data. The 
remainder of the ROIs did not support two groups suggesting that 
these features would be poor predictors of amyloid status. Out of 
the 46 ROIs, our results suggest that the left lingual gyrus was the 
strongest ROI to distinguish between two groups.

The top left of Figure 5 shows this region has response values 
skewed to the right, with a large difference in the component means 
and small separation interval. The other five regions in Figure 5, 
show the mean of the component means to be closer together and 
or have slightly larger separation intervals, resulting in smaller _

e
e TT σ± values. As the majority of the participants in our data 

are cognitively normal (266 individuals 31%), we suspect that 
these individuals have low amyloid across all regions resulting in 
ROI normalized SUVR values to be right skewed, as shown in the 
bootstrap densities in Figure 11 in Appendix A.2.

Figure 4: Set of 46 out of 72 ROIs supported two hidden disease groups are ranked in order of highest importance (y-axis) left to right by order 

of /
eTµ σ∆  . Refer to Table 2 in Appendix A.1 for a full list of ROI names and corresponding abbreviations.
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Figure 5: Top six FSPmix selected ROIs which have the highest importance value. In order from most to least importance, left lingual gyrus 
(14), right bank of the superior temporal sulcus (37), left rostral middle frontal gyrus(28), right inferior parietal gyrus (44), left pars-orbitalis 
gyrus (20), left pars-triangularis gyrus (21). Black density curves denote bootstrapped distribution, blue and pink vertical lines denote mean of 

component means (  1µ  and 
2µ  respectively), red lines denote separation interval 

_

e
e TT σ±  .

Feature Selection and Ranking

To compare the feature selection and importance ranking from 
FSPmix with other well-known feature selection algorithms, we 
also applied the case study data to rank ROI features using RFs 
(features are ranked from high to low mean decrease gini, often 
shown as the variable importance plot), absolute 0β ≠  coefficients 
from the LASSO and the relative influence value from GBM, both 
ranked from high to low values. As all four algorithms (RF, LASSO, 
GBM and FSPmix) utilize different approaches to select key features 
which best describe the response, we expect to see both similarities 
and differences on the features selected. Similarities in the results 
may arise due to the strength of each feature which may strongly 
support differences in the response groups. Differences in feature 
selection among these algorithms may arise due to the difficulty 
for each method to define those features that have only a marginal 
capability to separate response groups, and as such many features 
will be discarded due to different penalties used. For example, the 
LASSO is a parametric approach whose results are sensitive to the 
sparsity value chosen, whereas RF and GBM algorithms rely on an 
ensemble of decision trees to deduce the key features.

As the scope for this work is to present the FSPmix algorithm, 
we omit further details on the metrics and inner workings of each 
competing algorithm and refer the reader to the works by, and for 
full details on RF, GBM and LASSO algorithms respectively. In this 
work we used the default settings for the RF and GBM algorithms. 
Prior to implementing the LASSO, we ran the cross-validation on the 
generalized linear model via penalized likelihood implementation 

(cv.glmnet function from the glmnet R package) to determine the 
optimal sparsity value λ  . In this work the choice λ  for was chosen 
to be either the value which returned the minimum mean cross-
validation error or the largest value such that the error is within 
one standard error of the minimum cross-validation error. Applied 
to the ADNI data, we found that the λ  that returned the minimum 
mean cross-validation error resulted in 28 features selected by the 
LASSO. In order to level the playing field for the competing feature 
selection algorithms, the top 28 features for the RF, GBM and FSPmix 
were used to create Table 1. Table 1 shows the comparison of these 
four algorithms and their choice of features which best describe the 
response for ROIs which received two or more votes. Each feature is 
assigned one vote if an algorithm selects it as a key indicator based 
on their respective importance value.

For the sake of this comparison, we disregard how strongly an 
algorithm prefers specific features, and treat the selected features 
from different algorithms with the same weight. Features with four 
votes denotes they were chosen by all four algorithms, and features 
with two votes denotes that only two algorithms supported this 
to be an important feature. Analyzes of the 72 ROIs found three 
features that were selected from all four algorithms to be strongly 
associated with the response. Taking the union of those features 
selected from all four algorithms, we saw this number increase to 
33 ROIs. The left rostral middle frontal and right middle temporal 
and precuneus ROIs were selected by all four algorithms to support 
two hidden disease groups (Table 1). There were 16 ROIs which 
were selected by three algorithms as important features, with 
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FSPmix supporting ten of those. We note that while the RF and GBM 
contributed to majority of the votes among all the algorithms (24 
and 23 respectively out of 33), both FSPmix and LASSO contributed 

to 18 votes, suggesting that the FSPmix being an unsupervised 
algorithm has comparable feature selection capability to alternative 
supervised algorithms.

Figure 6: ADNI predictive probability density plot for top K = 10 ROI features selected from Figure 4, features ranked by order of importance.

Table 1: Feature selection (33 ADNI ROIs) which best describes non-amyloid accumulators’ binary response comparison between random forest 
(RF), lasso (L), gbm (G) and FSPmix (F) algorithms. These supported two or more votes from the four feature selection algorithms. FSPmix and 
LASSO contributed 18 votes listed above, whereas GBM and RF contributed 23 and 24 votes respectively.

ROI

names

No.

votes

Algorithm ROI

names

No.

votes

Algorithm

LRostralMidFront.28 4 RF, L, G, F LMidTemp.16 3 RF, L

RMidTemp.52 4 RF, L, G, F LParsOrbit.20 3 RF, F

RPrecuneus.62 4 RF, L, G, F LPostcent.23 2 L, F

LFrontPole.6 3 RF, L, G LRostralAntCing.27 2 RF, L

LFusiform.7 3 RF, G, F LSupFront.29 2 RF, G

LLingual.14 3 RF, G, F LSupParietal.30 2 RF, F

LPerical.22 3 RF, L, G LTempPole.33 2 L, G

LPrecuneus.26 3 RF, G, F LHippo.36 2 L, G

RBankssts.37 3 RF, L, F RInfTemp.45 2 G, F

RCuneus.40 3 RF, L, F RLingual.50 2 RF, F

RPerical.58 3 RF, G, F RMedialOrbFront.51 2 RF, G

RRostralMidFront.64 3 RF, G, F RParacent.53 2 L, G

RSupParietal.66 3 RF, G, F RParsTrian.57 2 G, F

RTransvTemp.70 3 RF, L, G RPostCing.60 2 RF, G

LCuneus.4 3 RF, G RPrecent.61 2 RF, L

LInfTemp.9 3 RF, G RHippo.72 2 L,G

LLatOrbFront.13 3 RF, F
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Assessment of predictive performance

In order to compare the predictive performance of the 46 
features selected by the FSPmix algorithm with another well-known 
unsupervised classification approach, we investigated the ROI data 
with a view to predicting amyloid status using k-means clustering 
with 2K = clusters and compared the specificity and sensitivity 
with the known response values. The scatter plot in Figure 12 in 
Appendix A.4 shows the true positive rate (y-axis) compared to the 
false positive rate (x-axis) for the predicted 46 ROIs. The FSPmix 
had slightly higher sensitivity and false positive rate in comparison 
with the predictions from the k-means clustering. The accuracy of 
both algorithms was computed by the ratio of the sum of all true 
positives and all true negatives divided by the sum of the total 
population [27]. The accuracy value ranges from zero denoting 
extremely poor accuracy to one implying perfect classification. The 
accuracy from k-means prediction is 0.7099 which is only slightly 
higher than the prediction accuracy from the FSPmix algorithm of 
0.6872. As the FSPmix is intended to be a preliminary exploratory 
tool to classify feature into binary disease/non-disease groups and 
search many potentially skewed features, it is reassuring to know 
that it has comparable prediction accuracy to k-means clustering. 
However, unlike k-means clustering or other unsupervised 
classification methods, the FSPmix will also identify and rank 
key features by order of their importance with respect to the two 
hidden groups.

Weighted Predictive Probabilities

In a similar manner as described in Section 4.1, post 
classification, prediction, and feature ranking, we computed 
the weighted predictive probabilities conditional on the top 

10K =  ROI features. Figure 6 shows the density curves for all 
the weighted predicted probabilities. It is interesting to note that 
in this application as the data comprises a large number of non-
amyloid pathology (group A) individuals, we see that majority of 
the probabilities are close to zero. This result also corroborates 
with the six bootstrap density plots shown in Figure 5, as they are 
all right skewed suggesting that majority of the group predictions 
were classed as group A, and hence be assigned a probability 
value close to zero. As the result in Figure 6 is of the predictive 
combination of 10K = features (the other four bootstrap FSPmix 
densities to compliment Figure 5 can be found in Appendix A.4), 
the few observations which support amyloid pathology groups 
(predicted as group B) is also evident by the small density curve 
skewed to the right in Figure 6. The conflicting group predictions 
among the 10K =  features are shown by the small number of 
observations which were assigned a predictive probability of 0.5.

Discussion

In this work we propose a scalable unsupervised feature 
selection and prediction algorithm (FSPmix) and demonstrated 
its use in an application to the ADNI case study data. Intended as 
an exploratory method to identify features which support two 
hidden groups, applied to neuroimaging data, FSPmix identified 46 
brain ROIs which strongly supported amyloid pathology and non-
pathology groups. Validated on two simulation studies, FSPmix 

demonstrated high predictive performance on highly skewed 
synthetic features with a sensitivity and specificity greater than 
0.9. As expected in features with overlapping groups, the predictive 
performance of the FSPmix deteriorates linearly with an inverse 
relationship for left or right skewed data. Classified features are 
then ranked by order of importance conditional on the separation 
of the two hidden groups and further analyzes enables the re-
classification of group prediction contingent of user defined top 

7K = selected features, resulting in weighted group prediction 
probabilities. This re-classification labeling resulted in an increased 
sensitivity and specificity predicted performance of 0.964 and one 
respectively.

The second simulation study of 1,000 synthetic genes 
demonstrated the scalability of the FSPmix algo-rithm, which 
enabled classification and prediction performance of 737 features. 
The prediction performance in the large scale, simulation study 
echoed the results from first simulation study in a linear decrease 
of sensitivity and specificity as feature group densities became 
overlapping. Interestingly on simulated gene expression data 
which had the same variance (different group means and were 
not skewed) the performance had a non-linear decrease on both 
sensitivity and specificity. Applied to the ADNI case study data on 
72 ROIs of the human brain, the FSPmix identified 46 ROIs which 
supported amyloid pathology and non-pathology groups. Once 
ranked, the left lingual gyrus was found to be the single best region 
in our case study which best discriminates between the two amyloid 
groups. FSPmix showed similar predictive performance to k-means 
clustering and identified similar features by order of importance 
as three commonly used supervised feature selection alternatives. 
Being a scalable and exploratory tool, a major limitation for the 
FSPmix algorithm is that it is not suitable for formal statistical 
inference.

While FSPmix delivers a range of analyzes to aid the user explore 
classification prediction and feature selection, all the statistical 
analyzes presented in this work are intended for exploratory 
purposes only. Future work would be to explore the theoretical 
statistical properties of the FSPmix methodology, in particular Step 
3 of Algorithm 1 which pertains to the bootstrap sampling to enable 
formal statistical inference for each feature. Another restriction of 
the FSPmix algorithm is that it is limited to binary classification of 
each feature. Complex medical diseases often include subgroups 
of individuals at various stages of pathology, for example in AD 
the three main broad stages of disease progression are CN to MCI 
to AD. In this instance FSPmix was applied to generalize the data 
into two groups, however, this motivates future work to extend 
the FSPmix methodology and allow for the exploration of user 
defined subgroups beyond binary disease and non-disease groups. 
Motivated by the results from our analysis, we propose several 
extensions to the algorithm.

While the current algorithm is suitable for the exploration of 
potentially two hidden groups (disease and non-disease) within 
each feature, future work to extend this to allow the user to search 
for more than two groups on all or a specific subset of features can 
easily be accommodated. As this is a parallelized algorithm suitable 
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for large data sets with binary response, application of the algorithm 
on other large-scale data sets outside the area of AD or medicine in 
general remains to be investigated. In summary, FSPmix showed 
comparable predictive and feature selection performance in both 
simulated and case study applications, demonstrating the potential 
of this algorithm as a powerful and scalable exploratory tool for 
both small and large binary data sets.

Conflict of Interest

The authors have declared no conflict of interest.

Acknowledgements

We wish to thank the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) study, including all the clinicians, scientists, participants, 
and their families. Data collection and sharing for this project 
was funded by the Alzheimer’s Disease Neuroimaging Initiative 
(National Institutes of Health Grant U01 AG024904) and DOD ADNI 
(Department of Defense award number W81XWH-12-2-0012). 
ADNI is funded by the National Institute on Aging, the National 
Institute of Biomedical Imaging and Bioengineering, and through 
generous contributions from the following: AbbVie, Alzheimers 
Association; Alzheimers Drug Discovery Foundation; Araclon 
Biotech; BioClinica, Inc; Biogen; Bristol-Myers Squibb Company; 
CereSpir, Inc; Cogstate; Eisai Inc; Elan Pharmaceuticals, Inc; Eli 
Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its 
affiliated company Genentech, Inc; Fujirebio; GE Healthcare; IXICO 
Ltd; Janssen Alzheimer Immunotherapy Research & Development, 
LLC; Johnson & Johnson Pharmaceutical Research & Development 

LLC; Lumosity; Lundbeck; Merck & Co, Inc; Meso Scale Diagnostics, 
LLC; NeuroRx Research; Neurotrack Technologies; Novartis 
Pharmaceuticals Corporation; Pfizer Inc; Piramal Imaging; Servier; 
Takeda Pharmaceutical Company; and Transition Therapeutics. 
The Canadian Institutes of Health Research is providing funds to 
support ADNI clinical sites in Canada. Private sector contributions 
are facilitated by the Foundation for the National Institutes of 
Health (www.fnih.org). The grantee organization is the Northern 
California Institute for Research and Education, and the study is 
coordinated by the Alzheimers Therapeutic Research Institute at 
the University of Southern California. ADNI data are disseminated 
by the Laboratory for Neuro Imaging at the University of 
Southern California. Funding for this work was provided by the 
Commonwealth Scientific and Industrial Research Organisation 
(CSIRO). Computational resources and services used in this work 
(Simulation study 2) were provided by the High-Performance 
Computing (HPC) research support, CSIRO.

Appendix

a)	 Appendix 1: List of ADNI feature ROIs (Table 2).

b)	 Appendix 2: Synthetic simulation study data and additional 
results: Simulated 20 features for FSPmix simulation one 
study shown in Figure 7. Figure 10 shows randomly selected 
densities for large scale 1,000 gene synthetic data.

c)	 Appendix 3: FSPmix ADNI boots trap densities.

d)	 Appendix 4: ADNI prediction ROC plot.

Figure 7: Simulated study I synthetic data set. Range of simulated features ranges from highly separable (Feature.1 and Feature.11) to 
overlapping features (Feature.10 and Feature.20). Binary classification into groups A and B are denoted by the red and blue densities 
respectively.
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Figure 8: Simulation study I: 20 features ranked by order of importance   value. As expected, synthetic features with high overlapping groups, 
such as feature 9, 10, 19 and 20 (as shown in Figure 7) have the lowest importance value; indicating the FSPmix allocated a large seperation 
interval which resulted in a large number of predicted observations into group C (unclassified) in comparison with predicted disease or non-
disease groups A or B.

Figure 9: Simulation study I: k-means predictive performance for 20 simulated features with sensitivity (red) and specificity (blue) dots.
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Figure 10: Random selection of eight simulated feature genes out of 1,000 for large scale assessment of FSPmix for simulation study II.

Figure 11: FSPmix densities on 46 out of 72 ROIs. Remainder of ROIs did not support the presence of amyloid accumulators and non-
accumulator groups. Blue and pink vertical lines denote the two meanings of the component mixture means respectively. Red vertical lines 

denote the separation interval 
_

e
e TT σ±   .
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Figure 12: Receiver operating curve (ROC) scatter plot for 46 predicted ROI features color coded for FSPmix (red) and k-means (blue).

Table 2: Table of 72 PET ROI features from ADNI study listed as per Desikan anatomical atlas. Regions divided into the left (ROI numbers 1-36) 

and right (ROI numbers 37-72) hemispheres prefaced by ‘L’ and ‘R’ respectively.

ROI name ROI abbreviation

Banks of the Superior Temporal Sulcus LBankssts.1, RBankssts.37

Caudal anterior cingulate LCaudalAntCing.2, RCaudalAntCing.38

Caudal middle frontal gyrus LCaudalMidFront.3, RCaudalmidFront.39

Cuneus gyrus LCuneus.4, RCuneus.40

Entohirnal gyrus LEntohirnal.5, REntohirnal.41

Frontal pole gyrus LFrontPole.6, RFrontPole.42

Fusiform gyrus LFusiform.7, RFusiform.43

Inferior parietal gyrus LInfParietal.8, RInfParieral.44

Inferior temporal gyrus LInfTemp.9, RInfTemp45

Insula gyrus LInsula.10, RInsula.46

Isthmus cingulate gyrus LIsthmusCing.11, RIsthmusCing.47

Lateral occipital gyrus LLatOcci.12, RLatOcci.48

Lateral orbital frontal gyrus LLatOrbFront.13, RLatOrbFront.49

Lingual gyrus LLingual.14, RLingual.50

Medial orbito-frontal gyrus LMedalOrbit.15, RMedialOrbit.51

Middle temporal gyrus LMedTemp.16, RMedTemp.52

Paracentral lobule LParacent.17, RParacent.53

Parahippocampus gyrus LParaHippo.18, RParaHippo.54

Pars Opercularis LParsOperc.19, RParsOperc.55
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Pars Orbitalis LParsOrbit.20, RParsOrbit.56

Pars Triangularis LParsTrian.21, RParsTrian.57

Pericalcarine LPerical.22, RPerical.58

Postcentral gyrus LPostcent.23, RPostcent.59

Posterior cingulate gyrus LPostCing.24, RPostCing.60

Precentral gyrus LPrecent.25, RPrecent.61

Precuneus gyrus LPrecuneus.26, RPrecuneus.62

Rostral anterior cingulate gyrus LRostAntCing.27, RRostAntCing.63

Rostral middle frontal gyrus LRostMidFront.28, RRostMidFront.64

Superior frontal gyrus LSupFront.29, RSupFront.65

Superior parietal gyrus LSupParietal.30, RSupParietal.66

Superior temporal gyrus LSupTemp.31, RSupTemp.67

Supramarginal gyrus LSupramarg.32, RSupramarg.68

Temporal pole gyrus LTempPole.33, RTempPole.69

Transverse temporal gyrus LTransvTemp.34, RTransvTemp.70

Amygdala LAmygdala.35, RAmygdala.71

Hippocampus LHippo.36, RHippo.72
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