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Abstract 
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Introduction 

Exponentiation of power distributions has one major advantage 
to model data that exhibit polynomial tendencies. Distributions of 
lower degrees do not match data of this sort. Measures from health 
sciences such as the mortality rate of people living with a particular 
epidemic, the spread of diseases; or from engineering such as the 
strength of a tensile string, the life of a mechanical appliance; or 
from the economic sector namely income distribution of workers, 
inflation rate, and exchange rate of currencies of developing econ-
omies are good examples where distributions of this nature are ap-
plicable.

Relevant studies are exponentiated power Ishita by [1], expo-
nentiated Ishita by [2], exponentiated power Lindley by [3], and ex-
ponentiated Adya by [4]. Other related studies are [5-15]. Interest-
ingly, many of these exponentiated power transformations are on  

 
one-parameter distributions. This suggests that the Lindley class 
of distributions has some usefulness in modeling. Members in this 
class include [16-25].

Modeling some universal events such as infant mortality rate 
and the life cycle of COVID-19 patients is dominating the literature 
due to the level of concerns these events have posed to every soci-
ety. Importantly, events such as these are threats to life, and hence 
human extinction is at the heart of modelers.

The main objective of this article is to develop a new parametric 
regression model that will be able to fit some skewed censored data 
and the rest of the article is in the following arrangement: in section 
2, the new model is formulated. In section 3, some of the proper-
ties are presented. In section 4, the estimation of the uncensored 
data procedure is carried out. In section 5, the log-transformed re-
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gression model equivalent of the proposed distribution is derived 
together with the estimation. In section 6, an application to the life 
cycle of COVID-19 patients with a history of diabetic Mellitus with 
their age disparity is done. In section 7, the second application on 
the infant mortality rate of some countries in 2021 is also done. The 
paper is concluded in section 8.

Formulation of the New Model

The Power Akash (PA) distribution proposed by [26] with c.d.f 
and p.d.f given as follows; 

( ) ( )
2

2
; , 1 1

2
x

x x
G x e

α
α α

θ
θ θ

θ α
θ

−
 +
 = − +

+    (1)

where θ , α >0. The probability density function (p.d.f) cor-
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The PA distribution is a two-component mixture that contains a 
Weilbull distribution (with shape parameter α  and scale parame-

ter θ ), and a generalized gamma distribution (with shape parame-
ters 3, α  and scale parameter θ ) with mixing proportion 
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The c.d.f and p.d.f of the exp-G distribution with power param-
eter c > 0 are given by

( ; , ) ( ; )cF x c G xξ ξ=  	  (3)

and
1( ; , ) ( ; ) ( ; )cf x c cg x G xξ ξ ξ −=  (4)

respectively, whereξ is the parameter vector. By substituting 
equation 1 into equation 3 and equation 1 and 2 into 4, the c.d.f and 
p.d.f of the random variable X   Exponentiated Power Akash EPA 
(c,θ ,α ) are as follows:
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respectively. The hazard rate function is given as 
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Definition 

(Linear Representation). Using the general binomial expansion, the pdf of the EPA distribution is given as follows;
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Figure 1: pdf of EPA(c, θ, α).

Figure 2: pdf of EPA(c, θ, α).

Figure 3: hazard function of EPA(c, θ, α).

Figure 4: hazard function of EPA(c, θ, α)

The hazard function of EPA has a bathtub, increasing and de-
creasing shapes, see figures 3 and 4. This feature enhances the flexi-

bility of EPA compared to the Power Akash and Akash distributions.
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Properties

Definition 

(Moment). The thr  raw moment of X 


EPA distribution is given as 
'
rµ = 0 ( )xf x dx∞∫
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Using the change of variable technique where 
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Simplifying equation 10 
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Following the same steps also where 
1

, ( )rx y m vα= becomes
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Estimation

Let 1 2, ,........ nx x x be n  independent and identically distributed random variable from the EPA distribution and ( , , )cζ θ α= vector 
of the unknown parameter then the log-likelihood function of ζ  
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The maximum likelihood of EPA is given as
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Equation 16 and 17 have no closed-form solutions and hence will be implemented in R using the known optim() function.
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Regression

Let log( )Y X= where X   EPA ( , , )c α θ defined in eq 6. Define 
1α
σ

= and e
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= , the log-Exponentiated Power Akash (LEPA) density 
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where , 0c σ >  and µ∈ . If X   EPA ( , , )c θ α , then log( )y X=   LEPA ( , , )c σ µ .The survival and density function of 
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MLE of beta For Right-Censored Sample

Suppose the lifetime X of n individuals diagnosed with COVID-19 virus is EPA ( )℘ distributed. Let
'|y V be the response variable of a 

parametric regression model from the EPA ( )℘ distribution with pdf in eq 23. To estimate the parameters β of the transformed model, the 
n individuals are quarantined and subjected to routine treatment at the same time. After time (t), (n − m) individuals recovers. If the life-
times of the other m(> 0) individuals are denoted by 1 2, ,...., my y y .Then, the likelihood of β can be expressed as
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where '( | )f y V is the pdf in eq 23. It is witty to write 
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The unknown parametric regression coefficients β estimates 
are obtained using numerical iteration implemented in R.

Application to COVID-19 Data

The dataset comprises the lifetime (in days) of 322 individuals 
diagnosed with COVID-19 through RT-PCR screening in Campinas, 
Brazil. These data were previously studied by [1]. The response 
variable 1y represents the time elapsed from the onset of symp-
toms until death due to COVID-19 (failure). [1] observed that about 
66.45% of the observations are censored. The variables considered 
(f or i = 1,..., 322) include:

iδ : censoring indicator (0 = censored, 1 = observed lifetime), 

1iv : age (in years), and 2iv  : diabetes mellitus (1 = yes, 0 = no or 
not informed). The suggested regression model for these COVID-19 
data is written as

0 1 1 2 2 ; 1,....,322,i i i iy v v z iβ β β σ= + + + =  (26)

where iz  the pdf in eq 20.

The Power Prakaamy (PP) distribution by [27], exponentiated 
Frechet (EF) distribution by [28], power Rama (PP) distribution by 
[29] and power Suja (PS) distribution (new) are used to compare 
with the proposed exponentiated power Akash (EPA) distribution. 
Note that the log- of each distribution is derived following the pro-
cedure in section 5 to obtain LPP, LEF, LPR, and LPS respectively.

The result from table 1 shows that the explanatory variables 
age and diabetes mellitus are significant at the 5% significance lev-
el. The negative signs of 1β and 2β mean that older individuals or 
those with diabetes tend to have shorter failure times. This result is 
in agreement with that obtained from [1] earlier study. From table 
2, the LEPA regression has the lowest criterion values hence con-
firming that the LEPA model provides a better fit for the COVID-19 
data.

Table 1: Estimates of the Regression parameters for the COVID-19 data.

Distr c σ     0β 1β   2β  

LEPA
0.5843

(0.5845)

0.8380

(0.5255)

3.7801

(0.9222)

-0.0187

(0.0039)

<3.0602
610−×

-0.2865

(0.1232)

[<0.0206]

LPP 1
1.3760

(0.0912)

3.6182

(0.3140)

-0.0285

(0.0042)

<4.149 1110−×

-0.4074

(0.1340)

[<0.0026]

LEF
154.1795

(116.3051)

3.8146

(0.4878)

10.9724

(1.3599)

-0.0212

(0.0413)

<4.8539 710−×

-0.3015

(0.1454)

[<0.0389]

LPR 1
1.3356

(0.0866)

3.5766

(0.3052)

-0.0273

(0.0040)

<6.206 1110−×

-0.4021

(0.1308)

[<0.0023]

LPS 1
1.5323

(0.0848)

1.9531

(0.2880)

-0.0185

(0.0036)

<4.4779
710−×

-0.2656

(0.1237)

[<0.0325]

Table 2: Measures of model performance.

Distr AIC CAIC BIC HQIC

LEPA 433.6238 433.981 452.4966 441.1584

LPP 645.113 645.3796 660.2112 651.1407
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LEF 441.9085 442.2652 460.7812 449.4431

LPR 641.4597 641.7264 656.5579 647.4874

LPS 436.1518 436.4185 451.25 442.1795

Figure 6: QQ plot for the COVID-19 data  

Figure 7: Quantile Residual plot for the COVID-19 data.

Application to Infant Mortality Rate Data

The data on infant mortality rate per 1,000 live births for a few 

chosen nations in 2021, as reported by https://data.worldbank.
org/indicator/SP.DYN.IMRT.IN This real data set is presented as

Figure 5: histogram for COVID-19 data.    

Figure 8: kernel density for infant mor-tality data.
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Figure 9: Boxplot for infant mortality data.

Figure 10: Violin plot for infant mortality data

A quick observation of the non-parametric plots in figures 8, 9, 
and 10 reveals that the infant mortality rate is right-skewed data. 

Probabil- ities taper off more slowly for higher values.

Table 3: Model Adequacy and Fitness Measures for the Infant Mortality Rate Data.

Distr NLL AIC CAIC BIC HQIC *W *A K-S P-value Rank

EPA 102.58 211.016 212.059 214.913 212.172 0.038 0.261 0.096 0.9658 1

PP 106.07 216.132 216.632 218.724 216.902 0.112 0.731 0.164 0.4596 5

EF 102.59 211.174 212.217 215.061 212.330 0.039 0.269 0.098 0.9583 2

PR 105.80 215.602 216.102 218.193 216.372 0.113 0.741 0.160 0.4933 3

PS 105.9 215.796 216.296 218.388 216.567 0.112 0.732 0.162 0.4797 4

Using the following information criteria; Akaike information 
criterion (BIC), Corrected Akaike Information criterion (CAIC), 
Bayesian Infor- mation Criterion (BIC), Hannan–Quinn information 
criterion (HQIC), the adequacy of the model was proved since the 

proposed distribution has minimum value for each of the criteria. 
The K-S, Cramer von misses *W , Anderson Darling statistics *A , 
and p-value for the proposed distribution show evidence that the 
new distribution fits the given data more than the competitors.

Table 4: MLEs of the unknown parameters using Infant Mortality Data.

Distr c θ α

EPA

PP

7823.7103

(14195.41)

1

7.4998

(1.7445)

1.4559

0.1412

(0.0335)

0.5054
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EF 1.7433

(2.3948)

(0.1947)

12.1775

(15.1142)

(0.0463)

0.9572

(0.6840)

PR 1 0.7371

(0.1383)

0.5964

(0.0615)

PS 1 1.0853

(0.1698)

0.5429

(0.0527)

Figure 11: density, cdf, survival function, and TTT plots of the infant mortality rate data.
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Figure 12: pp plots of the infant mortality rate data.

Conclusion

In this article, a new lifetime distribution with the potential of 
modeling data with inherent polynomial nature as well as skewed 
data. The properties of the proposed distribution were derived 
and the log-transformation of the proposed distribution to devel-
op a parametric regression model was carried out. The maximum 
likelihood estimation aided the estimation process for uncensored 
samples while the procedure for the estimation of the unknown pa-
rameters when data is censored was also shown. Essentially, the 
censored COVID-19 data set with the age of patients and diabetic 
mellitus index was deployed to justify the importance of the dis-
tribution. Furthermore, the distribution was fitted to the data on 
infant mortality rate (below age 5 years) reported for some coun-
tries by the World Health Organization in 2021. The distribution 
performs pretty well in both instances of application.
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