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Abstract 
The general linear model is a universally accepted method to conduct and test multiple linear regression models. Using this model, one has 

the ability to simultaneously regress covariates among different groups of data. Moreover, there are hundreds of applications and statistical tests 
associated with the general linear model.

However, the conventional matrix formulation is relatively inelegant which yields multiple difficulties including slow computation speed due to 
a large number of computations, increased memory usage due to needlessly large data structures, and organizational inconsistency. This is due to 
the fundamental incongruence between the degrees of freedom of the information the data structures in the conventional formulation of the general 
linear model are intended to represent and the rank of the data structures themselves. 

Presented here is an elegant reformulation of the general linear model which involves the use of tensors and multidimensional arrays as opposed 
to exclusively flat structures in the conventional formulation. To demonstrate the efficacy of this approach, a few common applications of the general 
linear model are translated from the conventional formulation to the tensor formulation. 
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Introduction 

The general linear model (GLM) or general multivariate regres-
sion model is a widely accepted technique across multiple fields 
to perform several multiple linear regression models. It offers ad-
vantages such as the ability to simultaneously regress covariates 
among different groups of data, among others. The applications and 
statistical tests derived from and expressed using the convention-
al matrix formulation of the GLM are numerous and multifaceted 
[1,2].

However, the conventional matrix formulation is relatively in-
elegant in some embodiments, yielding compromised computa-
tional efficiency and increased order of complexity in automation 
of statistical tests. For example, in cases in which multiple groups  

 

are modeled, the matrix formulation lacks the dimensionality to en-
code the relevant linear coefficients and variables. The brute force 
solution to this in the conventional formulation is to simply stagger 
the indices corresponding to the various groups such that the rele-
vant parameters and variables are all encoded in a sparse, flat data 
structure.

Put forth here is an elegant reformulation of the GLM, such that 
the data structures describing the important parameters and vari-
ables are tensors represented in Einstein notation [3]. To demon-
strate the efficacy of this approach, a general description of the 
formulation will precede a few brief examples of applications for 
which this formulation is more elegant than the matrix formulation.
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Conventional Formulation of the GLM  

The GLM most generally consists of N domain variables from 
which a linear atlas is generated which maps this domain space of 
ℝN to a linear manifold in ℝ1 defined by an outcome variable. More-
over, the parameters defining such atlas depend on the group from 
which the domain variables are derived. This linear atlas is conven-
tionally expressed as described in Eq. 1. 

Where y is the outcome variable, X is the covariant vector con-
sisting of the domain variables with the first entry equal to one 
corresponding to the intercept, and  is the contravariant vector 
consisting of the coefficients of said domain variables. This map is 
generated with a function of a series of residuals defined in Eq. 2. 

In this, Y is the contravariant vector representing samples of 
the linear outcome manifold in ℝ1 for a particular group, while X is 
a matrix describing a series of the same covariant vectors in Eq. 1, 
which were experimentally determined to map to said samples of 
the outcome manifold. By choosing the parameters of , the linear 
map will, at best, approximate the experimentally defined atlas, im-
plying the existence of residuals N.

The matrices are written out explicitly for only one regressor or 
domain variable in Eq. 3.
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At this point, the model is inconspicuously inelegant. However, 
upon the introduction of numerous groups from which the experi-
mental data is sampled, it becomes evident. Expanding this exam-
ple to one regressor in two groups is shown in Eq. 4. 
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Clearly in this staggered configuration, as more groups are in-
troduced into the model, the matrix continues to grow, with the 
majority of entries being equal to zero, which yields an unneces-
sarily large number of computations and quantity of memory us-
age. Moreover, without a priori knowledge of both the number of 
groups and number of regressors, it is impossible to predict the 

organizational structure of the matrix. In general, a model with m  
regressors, n  groups, and k  data points in each group will require 
a matrix X as a series of k n× covariant vectors, each with n  indices 
encoding only 1s and 0s which are implicated as coefficients of the 
intercepts and m n× indices encoding the experimental indepen-
dent data. The resultant size of the data structure in question is 
then ( )2 1 .kn m +

Tensor Formulation of the GLM  

These problems are circumvented with an alternative tensor 
formulation of the model expressed in Einstein notation. Notably, 
Eq. 2 Can be written as Eq. 5.

, , , ,k k kY X Nλ λ α λ λ
α β= +             (5)

Here, k indexes the samples of the experimental mapping, λ  
indexes over the group, and α  indexes over the intercept and each 
regression variable or parameter. From this, the extension to the 
translation of Eq. 1 is trivial. An example of such formulation in 
hybrid matrix Einstein notation with one regression parameter is 
shown in Eq. 6.
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GLM Contrast Matrix in Tensor Notation

The null hypothesis ( )0H  statements to test in the GLM take the 
form of a linear combination of the atlas parameters in  is equal to 
0. This linear combination is conventionally expressed in a manner 
outlined in Eq.7.

Where, g  corresponds to the value 0H  asserts is equal to zero 
and C  is the GLM contrast matrix, which is a covariant vector with 
indices corresponding to the atlas parameters in  which serves as 
their linear coefficients in the  0H statement. This is expressed ex-
plicitly for 2 hypotheses ( )0 1 ,g and g one regressor, and two groups 
in Eq. 8.
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Of note, even though, as it is shown here, the conventional for-
mulation is compatible with multiple hypothesis testing, it has not 
been conventionally implemented in this way and each row of the 
vector g and matrix C are implemented as separate statements. The 
compatible expression in the tensor formulation is shown in Eq. 9.
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,
,g Cη η α λ

α λβ=           (9)

This model is more naturally compatible with multiple 0H , 
which η indexes over, for F-testing or multiple t-tests. 

An example of such expression with two 0H  statements in a 
model with two separate groups and a single regressor is outlined 
component-wise in Eq. 10-23.
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While the number of elements in this expression remains un-
changed in the reformulated version, the rank of the data structures 

are congruent with their degrees of freedom. Moreover, translating 
this expression is necessary to implement applications which use it 
and would benefit both from a computational speed and memory 
requirement perspective from the reformulation, such as the multi-
ple t-tests application outlined below. 

GLM Multiple T-Test in Tensor Notation

The justification for representing the various applications of 
the GLM in a tensor formulation is self-evident at this point, and in 
most cases it is straightforward to infer such representations from 
the conventional notation. However, this is not always true, espe-
cially in embodiments which require inverting matrices. 

The t-statistic is of the most important of these embodiments, 
which is represented in the conventional matrix notation in Eq. 24. 

Where the t-statistic is generated separately for each 0H , and 
2σ  is the variance of the experimental outcome measure in most 

cases. 

To express this in the tensor formulation, it is evident that the 
numerator is g, which is indexed for each hypothesis and, conse-
quently, so is t. Moreover, it is clear that contracting a matrix with 
its transposed self can be expressed as shown in Eq. 25.
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Moreover, the inverse of a matrix expressed in tensor notation 
is computed as Dr. Roger Penrose puts forth [4] and as is shown in 
Eq. 26.

1 2 1 2 2 2

1 2 2 2 2 2

1, , ' , ' , , ' ,1
' , ' , '2W W W W

ζ λ α α α λ α λ ζ α α λ
α α α α µ α αµ

ε ε ε ε
−−    =               (26)

Where ε  is the totally antisymmetric Levi-Civita symbol which 
is defined from the sign by the permutation of its indices such that 
each value is a power of (-1) which matches the parity of the per-
mutation, otherwise the value is zero. It is important to note that 
this is a general algorithm to invert tensors which scales in num-
ber of computations with the number of elements in said tensor, 

regardless of rank. Therefore, a tensor of rank 2 (e.g. X in the con-
ventional formulation) would require more computations to invert 
than a rank 3 tensor that has fewer data elements (e.g. ,kX λ

α ) in the 
novel formulation). Extending this algorithm to ( ) 1T −

X X yields Eq. 
27.
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Results and Discussion

The tensor formulation of the GLM drastically decreases the 
number of elements in the data structures and reduces the quan-
tity of operations required to perform computations with said data 
structures, especially as more groups, regressors, and hypotheses 
are incorporated in the model. Specifically, a model which would 
require ( )2 1kn m +  elements in the matrix X in the conventional 
formulation now only requires knm  elements in the correspond-
ing reformulated data structure, thereby reducing the number of 
elements by a factor of ( )1

.
n m

m
+ Depending on the data type used 

in the implementation, this formulation can significantly improve 
the memory required to store large data structures. Moreover, as 
the number of operations to perform a function scale with the size 
of a data structure this has the potential to significantly reduce the 
time required to test various hypotheses. Since the vast majority of 
the applications of the GLM require computations with the matrix 
X, these improvements are ubiquitous among them.

Additionally, the automation of hypothesis testing with the GLM 
is significantly simplified in the tensor formulation by the property 
that no a priori knowledge of the number groups, regressors, and 
hypotheses is needed to infer the structural organization of the 
data. 

Finally, this solution is simply more elegant, as the rank of the 
tensors is complementary to the degrees of freedom of the infor-

mation which the data structure in the GLM is designed to interact 
with. 

There are hundreds of unique applications of the GLM, each of 
which can be formulated in this proposed manner. Presented here 
are the general structures of such formulations with a few exam-
ples, but the literature would benefit from further translation of 
other applications.
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