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Abstract 
We introduce a nonparametric random-effects model for the meta-analysis of a series of diagnostic accuracy studies of a quantitative biomarker 

that reported sensitivity-and specificity-values at multiple thresholds of the biomarker. The model is based on the observed numbers of cases and 
controls in between cutoff-values of the biomarker.

Observed numbers of cases and controls within studies were modeled using multinomial-normal or multinomial-dirichlet distributions. 
Parameters of our new model were Estimated using an MCMC-algorithm in a Bayesian framework. We provide code to run our method within the R 
statistical software. With our new model two example datasets were analyzed and compared to the method implemented in the R package diagmeta.

With two example datasets our approach gave comparable results as the method implemented in diagmeta. Results are illustrated using 
estimated density and cumulative distribution function of the biomarker and associated credibility intervals. Transformations thereof such as ROC-
curve, area under the ROC curve, and the Youden-index curve are also estimated together with credibility intervals.

We developed a new model for meta-analysis of diagnostic studies evaluating multiple thresholds of a quantitative biomarker. The new model 
provided comparable results as an existing method but with less assumptions.
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Introduction 

Steinhauser et al  [1] developed a method for the meta-analysis of 
multiple diagnostic test accuracy studies of a quantitative biomarker 
that reported sensitivity- and specificity-values at multiple thresh-
olds of the biomarker. Their method is implemented in a user-friend-
ly and free [2] and is very quick, depending a little bit on choice of the 
specific model and size of the data. Steinhauser et al made specific  

 
choices for the analysis model which validity may be questioned 
for some biomarkers. Their first choice concerned the distributions 
of the biomarker, which was assumed to be either normal or logis-
tic. Obviously, this assumption may not be valid in particular cases. 
Second choice concerned the application of standard linear mixed-
effects regression models of transformed sensitivity- and specific-
ity-values on the biomarker-thresholds. The assumption about the 
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linear relationship between transformed sensitivity and specificity 
and thresholds need not be correct. Lastly, the residuals of the mod-
els for transformed sensitivities/specificities associated with differ-
ent thresholds in the same study (i.e., sie  and 

sif  in the Steinhauser 
paper) were assumed to be independent. This assumption is pecu-
liar because different realisations of the sensitivities/specificities 
in the same study are almost certainly correlated (with increasing 
threshold, sensitivity will -necessarily- decrease and specificity will 
similarly increase). A final concern is that the method is based on 
the normal distribution approximation of the binomial distribution 
of the numbers of true positives and true negatives (with the usual 
0.5-trick when sensitivity or specificity is zero or 1). Steinhauser et 
al did point to this concern but did not as yet implement the bino-
mial distribution of sensitivity/specificity in their R-package.

To address these issues we extended the work of Steinhauser et 
al for data of the type that was considered by Steinhauser et al. We 
suggest to use a nonparametric method based on the multinomial 
distribution. In the next sections we elaborate the type of (meta-)
data we aim to analyse, we specify our statistical model and esti-
mation method. To illustrate we show results of two data sets; a 
new set concerning results on the enhanced liver fibrosis (ELF) bio-
marker  that might be useful to diagnose advanced liver fibrosis and 
a set that was published by [4] on diagnostic accuracy of fractional 
exhaled nitric oxide for the diagnosis of asthma. We finish with a 
discussion section.

Materials and Methods

Type of data

We consider a series of N diagnostic studies of a quantitative 
biomarker Y. In study i  there were included 1in ‘cases’ and 0in  
‘controls’. In the report of study i  the sensitivities and specifici-
ties to distinguish cases and controls were reported for ik  different 
cutoff-values ( ) 1 21 : , , ..., .

ii i i ikk ξ ξ ξ≥ Hence, for cutoff-val-

ue ijξ  the observed sensitivity- and specificity-values were ijse  
and 

ijsp  (see Table 1 with example data). From these reported 
results we calculated in every study the observed numbers of cas-
es and controls with biomarker-values in between cutoff-values: 

( )1 1 , 1i j i i j ijy n se se−= −  is the number of cases with , 1i j ijYξ ξ− < ≤
and ( )0 0 , 1i j i i j ijy n sp sp+= − is the number of controls with 

, 1 .i j ijYξ ξ− < ≤  Sensitivity 0ise  and specificity , 1ii ksp + were de-
fined as zero and could therefore be considered to be associated 
with cutoff-values 

0iξ = −∞  and , 1ii kξ + = ∞ , or any biological or 
theoretical lower- and upperbound of Y .

So, for study i  we translated published results into a vector of 
observed numbers of cases in the 1ik + categories of Y in study i
, denoted as ( )1 10 1,...,

ii i i ky y y= , and a vector of observed num-
bers of controls in the same ki + 1 categories of Y , denoted as 

( )0 00 0,...,
ii i i ky y y= . It is important to stress that in general the 

number of cutoff-values, 
ik , (likely) varies between studies and 

also that the specific cutoff-values themselves, 1 ,,...,
ii i kξ ξ , vary 

between studies. It is also important to stress that the biomarker 
Y is represented in this way as a categorical variable through the 
cutoff-values, and that the 1ik + categories can be considered as or-

dered.

Statistical models

We considered the distributions of the vectors 1iy and 0iy  to be 
multinomials given the numbers of cases and controls:

                       

               
( )11 1,ii iy multinomial nπ

              
( )0 0,ioi iy multinomial nπ

                                             
(1)

where    ( )1 10 11 1, ,..., ii i i i kπ π π π=  and 

   ( )0 00 01 0, ,..., ii i i i kπ π π π=
 are vectors of length 1ik + of prob-

abilities:  1i jπ  and  0i jπ are the probabilities that a random case or 
control in study i  had biomarker value , 1 , .i j i jYξ ξ− < ≤ Notice 
that in this model the covariance between two realisations 1i jy

 
and iily  in the group of cases in study i  equals  1 1 1i j i l inπ π−  
(and similarly in the group of controls), and therefore the asymptot-
ic covariance between for instance  11 iise π= and  1 22 i iise π π= +  
is equal to ( )1 2 11i i ise se n− , which is not necessarily zero (as is 
assumed in the diagmeta-package by Steinhauser et al).

Summed over all N studies we have m unique cutoff-values, say 

1 2, ,..., mθ θ θ  and we next defined the probabilities that a random 
case or a random control in study i  had biomarker value in be-
tween 1lθ −  and lθ as  1i lπ  and  0i lπ , respectively. Depending on the 
study-specific cutoff-values 1,..., ii ikξ ξ , we could write every prob-
ability  1i jπ and every probability  0i jπ as a sum of one or more 
probabilities 0i lπ  and 0i lπ . Suppose for instance that there were 

10m = unique cutoff-values over all N studies, and that in study i
there were two cutoff-values, 1iξ  and 

2iξ , and 4 1iθ ξ= and 6 2iθ ξ=
. Then 

 11iπ is the probability that a random case in this study had 
1iY ξ≤ or, equivalently, 4Y θ≤ , thus  

4
11 10i i ll

π π
=

=∑ and similar-
ly,  

6
12 15i i ll

π π
=

=∑ and  

10
13 17i i ll

π π
=

=∑ . More generally, we can 
write  1 10

m
i j i l ijll

zπ π
=

=∑  and  0 00

m
i j i l ijll

zπ π
=

=∑ , where ijlz  

equals , 1 1 ,i j l l i jξ θ θ ξ− −≤ < ≤ and zero otherwise.  

There are several options to further model 10 11 1, ,...,i i i mπ π π
and 00 00 0, ,...,i i i mπ π π and we explored two ways, namely by 
mixing the multinomial distributions with a multivariate normal or 
with the Dirichlet distribution. For the multinomial-normal mixture 
we first transformed 10 11 1, ,...,i i i mπ π π and 00 00 0, ,...,i i i mπ π π
using the soft-max transformation as: 

                          

( )
( )

1
1

11

exp

1 exp
i j

i j m
i jl

a

a
π

=

=
+∑

  

 

                  

( )
( )

0
0

01

exp

1 exp
i j

i j m
i jl

a

a
π

=

=
+∑                                    

  (2)
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(and 10 00 0i ia a= = ), and then we assumed that the vector of 
parameters of study i , i.e. ( )11 1 01 0,..., , ,...,i i i m i i ma a a aω = , was 
a random draw from the multivariate normal distribution with 
mean µ  (of length 2m) and covariance matrix ∑  (of dimensions 
2m). With this assumption our model is a random-effects me-
ta-analysis model. A fixed-effects model is obtained by assuming 

0∑ = , or actually by constraining 1 1i j ja a= and 0 0i j ja a= for all i .

This model is an extension of the bivariate meta-analysis model. 
If there is only one cutoff-value ( )θ , then 10 00 11 01, , ,i i i iπ π π π are 
the probabilities of false negative, true negative, true positive and 
false positive outcomes in study i , respectively, and 11ia  and 01ia  
are the logit-transformed sensitivity and 1-specificity of study i . 
In such case the parameter µ represents the average logit-trans-
formed sensitivity and 1-specificity in the population of diagnostic 
accuracy studies of this biomarker [3].

Like the bivariate model, our extended model can be general-
ized with (study-specific) covariates, and given the ordinal charac-
ter of the biomarker categories it seems sensible to use a ordinal 
logistic model, such as for instance a proportional odds model:

                                                         

                     

( )
( )

1 1
1

1 11

exp

1 exp
i j i i

i j m
i j i il

a b x

a b x
π

=

+
=

+ +∑

 

                    

( )
( )

0 0
0

0 01

exp

1 exp
i j i i

i j m
i j i il

a b x

a b x
π

=

+
=

+ +∑                   

 (3)

where xi is the observed value of a vector of covariates of study 
i . The vector of covariates may be different for cases and controls 
and the values of the covariates may even differ between biomark-
er-categories. The regression coefficients 1iβ  and 0iβ  may also vary 
over categories of the biomarker, but then the ordinal character of 
the biomarker-categories is not used in the statistical modeling. 
It may be useful too to assume that these regression coefficients 
are fixed parameters and not vary over studies (i.e., 1 1iβ β= and 

0 0iβ β= for all studies). For now we will consider the situation 
without covariates.

As an alternative approach we considered the multinomi-
al-Dirichlet mixture model. Here the study-specific probabili-
ties 10 1 00 0, ..., , ,...,i i m i i mπ π π π were considered to be sampled 
from the Dirichlet distributions ( )10 1 10 1,..., ; ,...,i i m mf π π α α and

( )00 0 00 0,..., ; ,..., :i i m mf π π α α

( ) ( )
1 1

10 1 10 1 1
010 1

1,..., ; ,...,
,...,

j
m

i i m m i j
jm

f
B

απ π α α π
α α

−

=

= ∏

( ) ( )
0 1

00 0 00 0 0
000 0

1,..., ; ,..., ,
,...,

j
m

i i m m i j
jm

f
B

απ π α α π
α α

−

=

= ∏
                                                      

 

where B(…) are beta-functions. This mixture model is also a 
random-effects meta-analysis model. Notice that the study-specific 

probabilities of cases ( )1i jπ and of controls ( )0i jπ  were supposed 
to be drawn from different Dirichlet distributions. This was chosen 
because of ease of computations, but is not absolutely necessary. It 
is different from the multinomial-normal mixture that is specified 
above, where ai0j and ai0j were sampled from a single multivariate 
normal distribution, but that choice can be amended too by draw-
ing ai1j and ai0j from different normal distributions. The multino-
mial-Dirichlet mixture model can also be generalized to include 
covariates (by modeling 1 jα  and 0 jα  as functions of covariates 
x ), but here we only considered the model without covariates.

Estimation

We first considered the multinomial-normal mixture model. 
Given ( )1 0,i i ia aω =  the conditional log likelihood of ( )1 0,i iy y  
equals

( ) ( )( ) ( ) ( )1 01 0 1 0 1 0
0

1 1 0 0
0 0 0

log , | , log log

log log

i

i

k

i j i jci i i i i i j i j
j

k m m

i j i l ijl i j i l ijl
j l l

L y y a a y y

y z y z

π π

π π

=

= = =

= +

   = +   
   

∑

∑ ∑ ∑
           

 (5)

and the marginal likelihood of ( )1 0,i iy y  equals

( )( ) ( ) ( )( ) ( )( ) ( )1 0 1 0 1 0 1 0 1 0, , | , g , | , ,mi i i ci i i i i i i i iL y y L y y a a a a a aµ= Σ ∂∫          (6) 

where ( )( )1 0, | ,i ig a a µ ∑ is the multivariate normal distri-
bution function with mean and covariance matrix∑  . Summing 
contributions ( )( )1 0log ,mi i iL y y over all N studies gives the total 
marginal log-likelihood.

The integral in the marginal likelihood is multidimensional of 
dimension 2m and has no analytical solution. Optimizing the total 
log marginal likelihood is difficult if m is large, therefore based sole-
ly on convenience-arguments we decided to use MCMC-methods in 
a Bayesian framework to estimate the parameters of interest, i.e.,

( )0 1,µ π π= and∑ (where 0π  and 1π  are the vectors of catego-
ry-probabilities averaged over studies for controls and cases, re-
spectively). In this framework we used as hyperprior distributions

( ) ( )1 2,...,  0,m multivariate normal Sµ µ µ= 

          
( ), 2Wishart R df m∑ =

                                          (7)

where S  was a diagonal symmetric matrix with entries ”0.001”, 
and R was a diagonal symmetric matrix with entries ”1”. These hy-
perprior distributions were considered to be (almost) uninforma-
tive.

The model was implemented in JAGS [7] and was run through 
the R-interface of JAGS. Below is the JAGS-syntax in the Additional 
Material-section. We chose to apply 50.000 burn-in iterations and 
then checked convergence. When converged we drew 50.000 val-
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ues from the posterior distributions with a thinning parameter of 
10 to reduce autocorrelation between sampled values. Afterwards 
the posterior distributions were graphically illustrated and sum-
marised with the mean, median and 2.5th and 97.5th percentiles. We 
also derived posterior distributions of transformations of ( )0 1,π π , 
such as sensitivities, specificities and Youden index values.

Estimation of the multinomial-Dirichlet mixture was slightly 
easier because integrals involved in the likelihood can be solved 
analytically. Given  ( )10 1,..., ii i kπ π  the conditional likelihood of 

( )10 1,...,
ii i ky y equals

 ( ) 

1
10 1 11 10 1

0

,..., | ,...,
i

i j

ii

k
y

i i k i jc i i i k
j

L y y π π π
=

=∏
                       

(8)  

and the marginal likelihood of the observations of study i can 
be written as: 

( ) 

 ( )




 ( )
 ( )

11 1
1 11 10 1 1

0 010 1

10 110 1

10 1

1,...,
,...,

,...,
,

,...,

i i
i ji j

i

i

i i

i

k k
y
i j i jm i i i k i

j ji i k

i i ki i k

i i k

L y y
B

B y y

B

α
π π π

α α

α α

α α

−

= =

 
= ∂ = 

 

+ +
=

∏ ∏∫

                 

(9) 

 
  

where  1 10

m
i j l ijll

zα α
=

=∑ . The total marginal log-likelihood, 1mL
, is the sum of log ( )1 ...m iL over pall studies which can be written as

11

1 1 1
1 0 1 0 1 0 0

log 1 1

ki
i ji j j oi i

yyk kN m m

m l ijl l ijl
i j r l r j l

L z r z rα α
=

= = = = = = =

∑   = + − − + −  
   

∑∑∑ ∑ ∑ ∑∑
             

(10) 

A similar total marginal log-likelihood was obtained for the 
data of the control-subjects in the N studies. These two likelihoods 
were independent, hence the decision to use two Dirichlet distribu-
tions led to separate analyses for the case- and control-data.

Like with the multinomial-normal mixture we used MC-
MC-methods in a Bayesian frame-work to estimate the parameters 
of interest in this approach too, i.e., 

00 0,..., mα α and 10 1,..., mα α
. Convenient is the possibility to obtain posterior distributions 
of any function of 10 1,..., mα α and 00 0,..., mα α , such as averaged 
category-probabilities for cases and controls, sensitivities, spec-
ificities and Youden-index values. In this frame-work we used 
as hyperprior distributions independent gamma distributions: 

( )1 0.01, 0.01j gammaα 

, and ( )0 0.01, 0.01j gammaα   for all 

)0,..., .j m=

Results

We analyzed data coming from N = 10 studies on the diagnostic 
value of the enhanced liver fibrosis (ELF) biomarker for diagnosis 
of advanced liver fibrosis. ELF is a weighted combination of type 
III procollagen peptide (PIIINP), hyaluronic acid (HA), and tissue 
inhibitor of metalloproteinase-1 (TIMP1) measured in blood. The 
data retrieved from the 10 published papers is summarised in Ta-
ble 1. Results are available of 28 study-specific cutoffs and 24m =
unique thresholds of the ELF biomarker.

Table 1: Study cutoff values, and observed sensitivities and specificities in the various studies on the diagnostic value of the enhanced live fibrosis 
(ELF) biomarker.

Study nr Author Cutoff value Number of controls Specificity Number of cases Sensitivity

1 Dvorak 2014 5.96 39 0.974 17 0.882

1 5.94 0.923 0.941

2 Eddowes 2018 9.8  25 0.92 25 0.4

2 7.7 0.24 0.96

4 Lykiardopoulos 2016 7.7  120 0.683 38 0.737

4 9.8 1 0.184

8  Miele 2017 9.8  67 0.925  15 0.867

9 Guha 2008 10.17 148 0.899 44 0.795

9  -4.25  0.122  1

9  8.97  0.419  0.977

9  9.3  0.568  0.955

9  9.65  0.75  0.909

9  10.69  0.953  0.614

9  28.35  0.993  0.295

9 35.59 1 0.159

11 Anstee 2018 9.8  923 0.73 2260 0.74

11 11.3 0.98 0.2

12  Boursier 2018 8.64  250 0.424 167 0.898
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12 10 0.896 0.473

13 Polyzos 2019 9  24 0.833 7 0.857

15 Stauber 2018 9.1 88 0.75 34 0.941

16 Welsh 2018 7.34 17 0 9 1

16  9.04  0.647  1

16  9.4  0.765  0.889

16  9.44  0.765  0.778

16  10.22  0.941  0.667

16  10.83  1  0.556

16  13.23  1  0

Using the multinomial-normal mixture approach, estimated av-
eraged category-probabilities (i.e., 1 for cases and 0 for controls) 
were calculated and those are reported in the top panel of Figure 
1: on visual inspection the biomarker did not seem to be normally 
distributed, especially not in the controls. The empirical cumulative 

distribution functions are illustrated in the lower panel of Figure 
1, separately for the cases and the controls. In these figures every 
study is represented by colored thin lines, and the averaged cumu-
lative distribution functions are represented by thick black lines.
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From the estimated average distribution functions we calcu-
lated the average ROC curve and the average Youden index-values 
for all thresholds. Both are given in Figure 2. Youden index was 
highest for the cutoff-value Y=9.8 (Youden index=0.49, 95 % CI: 

0.437-0.541), but a similar value was found for Y=9.0 (Youden in-
dex=0.488, 95% CI: 0.383-0.606). Estimated averaged sensitivities 
and specificities for all unique thresh-olds are reported in Table 2.

Table 2: Cutoff values and estimated averaged sensitivities and specificities.

Cutoff Mean sensitivity SD Sensitivity Mean specificity SD Specificity

-4.25 0.9693207 0.004777098 0.02789814 0.003948594

5.94 0.95045566 0.004134327 0.31382702 0.086766706

5.96 0.9360575 0.005980867 0.37505465 0.083353262

7.34 0.9069236 0.023658799 0.44013223 0.067984032

7.7 0.89515431 0.018423903 0.48990319 0.063187571

8.64 0.87031168 0.018667507 0.5368792 0.065490571

8.97 0.85492016 0.019085337 0.6155565 0.066996419

9 0.84142754 0.019298844 0.66581335 0.060351582

9.04 0.81165735 0.021849068 0.69732891 0.057131028

9.1 0.78030771 0.02309641 0.72151872 0.056034124

9.3 0.72299728 0.036643855 0.75566811 0.046710561

9.4 0.69375986 0.041391479 0.7949153 0.037427016

9.44 0.66072856 0.044795262 0.80896748 0.034383374

9.65 0.63548991 0.043959107 0.84238979 0.031644146

9.8 0.61669467 0.038855762 0.87308937 0.026219973

10 0.53590861 0.03514464 0.89893094 0.018627928

10.17 0.49255842 0.033277674 0.91116568 0.016986032

Figure 1: Density and cumulative functions.

http://dx.doi.org/10.33552/ABBA.2023.04.000612


Citation: Aeilko H Zwinderman*. A Nonparametric Random-Effects Meta-Analysis Model for Diagnostic Accuracy Studies with 
Multiple Thresholds of Quantitative Biomarkers. Annal Biostat & Biomed Appli. 5(3): 2023. ABBA.MS.ID.000612. 
DOI: 10.33552/ABBA.2023.05.000612.

Annals of Biostatistics & Biometric Applications                                                                                                               Volume 5-Issue 3

Page 7 of 10

10.22 0.38469774 0.03696599 0.92685013 0.013769665

10.69 0.3154259 0.032938925 0.94335158 0.009243735

10.83 0.26738084 0.027964296 0.95765962 0.006180633

11.3 0.16151088 0.016187847 0.97100239 0.003835921

13.23 0.13173427 0.019854194 0.97830708 0.003519755

28.35 0.08007334 0.009776116 0.98546978 0.002306074

35.59 0.03750751 0.008358932 0.99144331 0.001860916

Figure 2: ROC and Youden-index curves.
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The area under the ROC (AUC) was estimated as 0:816 with 
95% credibility inter-val 0:788 0:851. Convergence of the model 
seemed to be sufficient; as an exam-ple the trace- and density-plots 
of the AUC-statistic are given in Figure 3. Using the multinomi-
al-Dirichlet mixture we found similar results, although in general 
with wider credibility intervals; estimated area under the ROC was 

0:792 with 95% credibility in-terval 0:700 0:866. Estimated area 
under the ROC was 0.796 (95% ci: 0.68-0.88) according to the 
least constrained DIDS model of Steinhauser et al, but the DIDS al-
gorithm did not converge. Only with the simpler CS- and CI-mod-
els did their algorithm converge but then the AUC estimates were 
0.747 and 0.696, respectively.

As a second example we re-analyzed the data of [4] on the di-
agnostic accuracy of fractional exhaled nitric oxide (FENO) for the 
diagnosis of asthma. The data were from 29 studies reporting sen-

sitivity and specificity results of 150 cut-offs, of which 53 thresh-
olds were unique. The data is available on: https://data.mendeley.
com/datasets/fndpn5bnps/1.

Figure 3: Trace- and density-plots of the c-statistic.
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Figure 4: Density and cumulative functions of the various studies of the fractional ex-haled nitric oxide biomarker.

The random-effects model did not converge within a reason-
able time-frame, and therefore we performed a fixed-effects anal-
ysis. The results of the multinomial-normal and of the multinomi-
al-Dirichlet mixture models were again very comparable; we report 
therefore only the results of the multinomial-normal mixture 
model. Observed and estimated average cumulative distributions 
of FENO in controls and cases per study are reported in Figure 4 
(top panel) and the associated ROC curves are reported in the low-
er panel. The thin coloured lines are associated with the individu-
al studies, the thick black lines represent averages (together with 
95% credibility intervals). Area-under-the-averaged-ROC-curve 
(AUC) was estimated as 0.750 (95% CI: 0.732-0.767). AUC was esti-
mated as 0.778 (95% ci: 0.710-0.834) according to the DIDS-model 
of Steinhauser et al [5].

Discussion

We extended the work of Steinhauser et al for the meta-analy-
sis of the results of a series of diagnostic studies of a quantitative 
biomarker Y where results were reported with sensitivity and 
specificity values at multiple and varying cutoff-values across the 
studies. Our model is based on the observed numbers of cases and 
controls in the various categories of the biomarker Y defined by the 
cutoff-values used by the different studies and we specified a ran-
dom-effects, meta-analytic, structure. Our approach gave similar 
results as Steinhauser et al’s method for the two example datasets 
that we considered, but that may not be the case in general. Our 
model requires less assumptions and therefore is likely more ro-
bust.

Both our and Steinhauser et al’s method ignore the reasons 
why the specific cutoff-values were chosen in the studies, so, basi-
cally, the cutoff-values were considered to be ‘fixed’. In practice cu-
toff-values are probably highly coincidental and the sampling-vari-
ation underlying these choices is ignored, which likely leads to too 
small credibility or confidence intervals.

That our approach does not require any distributional assump-
tion for the biomarker is a nice feature, but it has as a downside that 
statistics (like Youden, sensitivity, specificity) can only be calculat-
ed for cutoff-values that have been used in at least one study. This is 
unlike Steinhauser et al’s method where the underlying parametric 
model also allows estimation of performance statistics at thresh-
olds that not have been used by any of the included studies. Our 
model can perhaps be smoothed in order to facilitate interpolation, 
for instance by penalizing squared differences between adjacent 
categories (i.e., ( )2

1 1, 1i j i jπ π −− ), but that is outside the scope of 
the present paper.

 

Our approach is implemented in the standalone computerpro-
gram JAGS and runs through the rjags-library in R. It is much less 
fast than the approach of Steinhauser et al, needing hours of compu-
tation time (versus seconds by Steinhauser et al’s method). This is 
consequence of both the nonparametric character of our model and 
our decision to use a Bayesian estimation algorithm. Perhaps calcu-
lations can be sped up by using Hamiltonian MCMC (as implement-
ed in the Stan program), but the large(r) number of parameters in 
our model that needs to be estimated is the main issue. For the liv-
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er-biomarker example there were 24 different thresholds, meaning 
that there were 25 categories in the biomarker-distributions in cas-
es and controls. Therefore, there were ( )2* 25 1 48− = mean-pa-
rameters to be estimated (i.e.,µ ) and ( )48* 48 1 2 1128− =

variances and covariances. In Steinhauser et al’s approach there 
were 4 mean and ( )4* 4 1 2 6− =  (co-)variance parameters in their 
largest DIDS-model which is best comparable to ours. Moreover, the 
number of parameters remains the same in their model whereas 
the number of parameters in our model is a direct function of the 
num-ber of different cutoff-values reported in the set of studies. It 
took a few seconds to analyse Schneider et all’s FENO data, whereas 
it took several hours with our approach.

Computation time of our approach for the liver-biomarker data 
was about 30 minutes compared to a few seconds for Steinhaus-
er et al’s approach. However, Steinhauser et al’s software reported 
convergence-problems for most of the complex models. It appeared 
that correlations between some of the random effects were close to 
unity. Models can be simplified in Steinhauser et al’s approach but 
when doing that we found that results were quite varying. We found 
that AUC’s varied between 0.696/0.747 according to Steinhauser et 
al’s CI/CS models that converged without warnings to 0.796/0.809 
according to the DIDS/DICS-models that failed to converge with 
singular fits. Because of the Bayesian algorithm that we used, such 
convergence problems did not arise with our approach. Conver-
gence was fine as judged by trace-plots [6,7].

As described earlier, fixed-effects model-variants are easi-
ly formulated by dropping the study-subscript i from the trans-
formed category-parameters 0i ja  and 1i ja and actually specifying 

1 1i j ja a= and 0 0i j ja a= for all 1,...,i N=  and 1,..., .j m=  This 
leads to a minor adaptation of the JAGS-syntax. The results of the 
fixed-effects model for the two examples were comparable, but the 
averaged density- and cumulative distribution functions were less 
smooth (and therefore the averaged ROC-curves too).

Conclusion

We developed a new model for meta-analysis of diagnostic 
studies evaluating multiple thresholds of a quantitative biomarker. 

The new model provided comparable results as an existing method 
but with less assumptions.
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