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Abstract 
The outcomes of radiotherapy (RT) of cancer patients significantly depend on the radiosensitivity of tumor to ionizing radiation. The degree 

of radiosensitivity (RS) and radioresistance (RR) of the tumor is clinical predictor of the therapeutic responce of oncopatients to RT and should be 
considered as a key factor in RT treatment planning in defining the delivered dose, fractionation, and the duration of the RT course. In this work, 
we developed a method for determining cancer cell RS/RR based on the analysis of experimental data on clonogenic survival of cancer cells using 
machine learning. A combination of the clustering methods with the principal component analysis was applied to discriminate clusters of RS and 
RR cancer cells using parameters of dose dependencies of cancer cell survival. Based on the obtained results, a statistical model was developed and 
trained on a dataset of experimental data and was successfully validated to determine the radiosensitive and radioresistance cancer cells.
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Introduction 

In recent decades, the significant progress in radiotherapy (RT) 
in oncological patients has been made thanks to the rapid devel-
opment and implementation of the new radiosurgical methods 
and radiotherapy equipment with high-quality ionizing beams, 
precision methods of dose delivery to the target volume, and the 
use of optimal RT plans. All this led to increasing effectiveness of 
RT by achieving its main goal - to maximize the accuracy of the 
beam delivery and minimize the dose load on critical organs and 
healthy tissues in order to reduce the risk of acute post-radiation 
complications [1]. However, there remains a problem of high vari-
ability in the responses of individual patients to RT, which poses 
the challenge of short- and long-term prognostics of the treatment 
outcomes. As radiobiological and clinical studies have shown, RT 
results significantly depend on the radiosensitivity (RS) of cancer 
cells of oncology patients to ionizing radiation (IR). It has been  
found that cancer cells have a wide range of radiosensitivity, which  

 
can vary from high radiosensitivity with high contrast to radiosen-
sitivity of healthy cells to low radiosensitivity up to radioresistance 
(RR) [2]. It has been established that the RS of cancer cells depends 
not only on the dose of IR but also on the cancer cell’s ability to 
adaptation to IR, in particular, by repairing damaged DNA when 
exposed to IR. The therapeutic response of tumor to RT depends 
on many factors, which requires optimization of the delivered dose, 
the number of fractions, and the duration of the RT course for each 
patient, as well as the inclusion of molecular and genetic diagnostic 
methods for prognostic estimation of RT results. In this direction, 
the use of machine learning (ML) and artificial intelligence for pre-
diction of treatment outcomes is the promising way to further de-
velopment of the personalized and precision RT [3].

In this work, we developed a computational method for deter-
mination of the radiosensitivity of cancer cells based on the analy-
sis of clonogenic survival data using machine learning. The method 
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consists in clustering the characteristics of cancer cells in order to 
determine clusters of RS and RR cancer cells.

Methods

To determine the parameters of cell survival under radiation, 
the experimental dose dependence data were approximated by the 
linear-quadratic (LQ) model commonly used in radiobiology [4]. In 

the process of training of the developed ML model, we used a data-
set of published experimental data on 35 cancer cell lines [5-14] 
and non-cancerous cell HPDE (immortal human pancreatic duct 
epithelial cell line) [14] (Table 1). The dataset included RS cell lines 
like Capan-2, Dan-G [14], MCF-7, ZR-751 [15] as well as RR cell lines 
like suit-2 007, patu-8998T, HPDE [14], BT-20 [15] and others. 

The experimental dose dependencies of cell survival were ap-
proximated using the equation of the linear-quadratic (LQ) mod-
el [4] which is commonly used in radiobiology to describe dam-
aging effects of IR and to develop RT plan in radiotherapy [16]. 
In the LQ model, dependence of the survival fraction (SF) of cel-
lular clones on the radiation dose D is defined by the equation: 

( ) ( )2

0
D DSF D S e α β− +

= , where α and β – parameters characterize 
the cell’s radiosensitivity. Parameter α reflects probability of lethal 
damages of cellular DNA by IR, while parameter β relates to sub-
lethal DNA damages which can be repaired by cellular reparation 
mechanism.  Radiosensitivity of cancer cells is characterized by 
the steepness of a survival curve (Figure1) and is generally defined 
by a ratio α/β.  Radiosensitive cells exhibit a high α/β ratio and 
show a steep survival curve, while radioresistant cells or cells with 
the weak radiosensitivity show a low α/β ratio and their survival 
curves possess a pronounced curvature. The equation of survival 
fraction SF(D) of the LQ model was applied to fit experimental data 
on clonogenic survival of 36 cell lines and define parameters α and 
β which were then used in clustering of RS and RR cell lines.

Taking into account the high variability of α/β ratio for cancer 
cells, the clustering method was used together with the principal 
component analysis (PCA) in order to separate RF and RR cells 
according to α and β values [14]. The PCA method is meant for 
reducing the dimension of the dataset by projecting it into a low-
er-dimensional sub-space of principal components (PC) [17]. In 
addition, it is used to increase the diversity of the dataset features, 
because the first axis of the PC is constructed to hold the most vari-
ance of the data and the next PCs are chosen orthogonal to the last 
to capture the rest of variance of the data. The construction of the 
PC system is reduced to the diagonalization of the covariance ma-
trix ( )cov ,ij i jC X X= , where 

iX  (i=1, 2, 3, ... n) – a vector of n ob-
servations of the dataset under investigation. An orthogonal trans-
formation of vector 

iX to the principal components 
iZ consists in its 

projection into PC axes:  TZ AX= , where А is a transformation ma-
trix which contains the eigenvectors of the matrix C in its columns.

The PCA was used in the combination with k-means clustering 
method [14]. The statistical model was developed in the Python 
programming language (version 3.10.2) using the Python machine 
learning library sklearn (scikit-learn.org).

Figure 1: Dependencies of the survival fraction (SF) of cancer cells on the radiation dose (D). SF is given on a logarithmic scale. Points - 
experimental data, lines - approximation of the experimental data by the LQ model.
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 Results and discussion

The theoretical dose-response curves together with experi-
mental data are presented in Figure 1. The parameters α, β and a 
ratio α/β for the cell lines are given in Table 1. As seen, the LQ mod-
el satisfactorily describes the experimental dose-response curves 
that is quantitatively characterized by a high coefficient of determi-

nation R2 (see Table 1). Calculations showed that the α/β ratio for 
the selected set of cells range widely from 0. Gy to 261 Gy that cor-
roborate the high variability of the radiosensitivity of cancer cells. 
In particular, high α/β values were obtained for the radiosensitive 
cells Dan-G and FamPac of pancreatic cancer, OKF6/TERT1 of squa-
mous cell carcinoma, RKO of colon cancer, and ZR-751 of breast 
cancer (see Table 1).

Table 1:  Parameters α and β of LQ model, α/β ratio, coefficient of determination R2. RS cells are marked, and rasiosensitivity of cells RS (1 – radio-
sensitive and 0 – radioresistant cells)

Cell line α, Gy-1 β, Gy-2 α/β, Gy RS Cell line α, Gy-1 β, Gy-2 α/β, Gy RS

suit-2 0071 0.053 ± 0.07 0.0598 ± 
0.008 0.89 0 WIDR5 0.00 ± 0.03 0.0417 ± 0.003 0 0

L3.6PL1 0.426 ± 0.07 0.0262 ± 
0.009 16.31 1 SKLU16 0.12 ± 0.03 0.0368 ± 0.004 3.27 0

MiaPaca-21 0.21 ± 0.06 0.0399 ± 
0.008 5.26 0 hx 1446 0.121 ± 0.04 0.0234 ± 0.006 5.19 0

Capan-21 0.596 ± 0.1 0.0321 ± 0.01 18.56 1 hx 149m6 0.138 ± 0.02 0.0177 ± 0.002 7.78 0

Dan-G1 0.548 ± 0.08 0.0047 ± 0.01 115.88 1 hc 126 0.154 ± 0.05 0.0318 ± 0.007 4.86 0

Panc-11 0.287 ± 0.05 0.025 ± 0.006 11.47 1 hx1476 0.083 ± 0.008 0.0151 ± 0.001 5.49 0

FamPac1 0.835 ± 0.08 0.0032 ± 0.01 259.37 1 SW15737 0.093 ± 0.08 0.0761 ± 0.01 1.22 0

PaTu-8988T1 0.224 ± 0.06 0.0269 ± 
0.007 8.3 0 H4607 0.262 ± 0.08 0.0463 ± 0.006 5.66 1

HPDE2 0.204 ± 0.1 0.0418 ± 0.01 4.88 0 SWp7 0.103 ± 0.001 0.0545 ± 
0.0002 1.89 0

OKF6/TERT13 0.516 ± 0.02 0.0167 ± 
0.005 30.82 1 SWg7 0.1 ± 0.002 0.0389 ± 

0.0003 2.56 0

CAL-333 0.223 ± 0.05 0.0511 ± 0.01 4.35 0 MCF-78 0.509 ± 0.06 0.3737 ± 0.02 1.36 1

FaDu3 0.244 ± 0.007 0.028 ± 0.001 8.71 0 ZR-7518 0.989 ± 0.07 0.0123 ± 0.01 80.25 1

RKO4 0.695 ± 0.1 0.0372 ± 0.02 18.68 1 MDA-MB-2318 0.292 ± 0.03 0.0734 ± 0.004 3.98 1

KM12L44 0.00 ± 0.01 0.0439 ± 
0.002 0 0 BT208 0.156 ± 0.02 0.0103 ± 0.003 15.11 0

HT295 0.022 ± 0.02 0.0587 ± 
0.005 0.37 0 LOVO9 0.00 ± 0.07 0.0478 ± 0.008 0 0

SW4805 0.143 ± 0.02 0.0396 ± 
0.005 3.6 0 AMC 304610 0.02 ± 0.05 0.0633 ± 0.01 0.32 0

SW7075 0.217 ± 0.04 0.0388 ± 0.01 5.59 0 VU 10910 0.125 ± 0.01 0.0379 ± 0.003 3.3 0

SW485 0.4 ± 0.1 0.2987 ± 0.05 1.34 1 VU 12210 0.123 ± 0.04 0.0602 ± 0.008 2.05 0

1human pancreatic cancer, 2immortal human pancreatic duct epithelial cell line, 3squamous cell carcinoma, 4colon cancer, 5adenocarcinoma 
of the colon,6adenocarcinoma lung cancer, 7epithelial lung cancer, 8breast cancer, 9human colorectal carcinoma, 10glioblastoma

The principal component analysis (PCA) was applied to the set 
of parameters 1X α β=  and 2X α= , which were previously trans-
formed into normalized-centered values by converting them into 
variables with zero mean and normalizing by dividing them by their 
variance. After performing the PCA, the k-means clustering method 
was applied. Figure 2 shows the results of the combination of PCA 
and k-means clustering of the dataset in the axes of the principal 
components PC-1 and PC-2, where the obtained PCs of the data 
were placed on a unit circle by normalization. As seen, the model 
reproduces two clusters which respectively include radioresistant 
and radiosensitive cells.  The predicted radiosensitivity (RS) of all 

the cells is given in Table 1. According to the clustering results, cells 
Capan-2, Dan-G (human pancreatic cancer), MCF-7, ZR-751 (breast 
cancer), SW48 (lung cancer) were classified as RS cells. Otherwise, 
cells hx 144, hx149m, hc 12 (lung cancer), AMC 3046, VU 109, VU 
122 (glioblastoma), HPDE (non-cancerogenous immortal human 
pancreatic duct epithelial cell), suit-2 007, PaTu-8988T (human 
pancreatic cancer), and BT20 (breast cancer) were classified as RR 
cells. The prediction of RS of these cell lines made by the developed 
model agreed well with experimental data of RS of different cancer 
cells [14,18].
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Figure 2: Clustering of cancer cell lines according to their radiosensitivity to ionizing radiation by applying a combination of the PCA and the 
k-means clustering method. Circles - radiosensitive cells, squares - radioresistant cells, triangles - the centroids of two cell clusters.

To validate the developed model, we used the new dataset of 
parameters α/β and α of cells which were not included in the mod-
el’s training dataset. The transformation of vector (α/β, α) to the 

principal components PC-1 and PC-2 by matrix A Allowed for the 
correct classification of the new set of cells according to their ra-
diosensitivity. 

Figure 3: Оnсоmutations in cancer cells belonging to RS and RR clusters. Columns marked my red and grey colours include RS and RR 
cells, respectively.

 To investigate association between genetic alteration and ra-
dioresistance of the selected cancer cells, we performed bioinfor-
matics analysis of the mutations in cancer cells belonging to the RS 

and RR clusters. Gene data were derived from the mutation data-
bases COSMIC (sanger.ac), GeneCards (www.genecards.org ) and 
DepMap (depmap.org). The heatmap in Figure 3 shows mutations 
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in the genes coding proteins of the key cellular signaling pathways 
which are responsible for 1) repair of DNA damage (TP53, ATM, 
BRCA1 genes, etc.); 2) cell proliferation (EGFR, PTEN, PI3K, BRAF, 
etc.), and 3) apoptosis (BCL, BAX, etc.) [7]. As established previ-
ously the listed mutations are responsible for the occurrence of 
radioresistance in RT patients [4]. Today the systems extensive 
investigation directs to reveal a link between the radiosensitivity/
radioresistance of cancer cells and the activity of these signalling 
pathways in order to develop prognostics biomarkes of the thera-
peutic response of individual patients to RT [19].

Conclusion

The statistical model for classifying radiosensitive and radiore-
sistant cancer cell lines was developed and trained on a dataset of 
experimental data on clonogenic survival under ionizing radiation. 
The model validation showed that the clustering method satisfac-
torily classifies cells according to their radiosensitivity. Application 
of the proposed model to classify the radiosensitivity of cancer cells 
and determination of radioresistant cell lines can be used to define 
the total doses, fractionation doses, and fractionation schedules in 
optimal radiotherapy treatment plans in personalized therapy. The 
further development of the model aims at increasing training data-
set of cancer cells and the extension of the model to the analysis of 
radiosensitivity of heterogeneous tumors.
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