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Abstract 
Baseline covariate adjustment in randomized controlled trials (RCTs) in oncology with primary endpoint time to event has a long history. 

This paper reviews the past, present and future of this practice. We distinguish between stratification by baseline covariates which is used to gain 
precision in estimates and use of log linear models, such as proportional hazards regression, with or without stratification. The latter is done either 
to increase precision in estimates or to find which covariates may be considered prognostic factors. Knowledge of prognostic factors will allow us 
to define characteristics of patients who are likely to benefit from treatment and are a vital part of the new initiative for precision or personalized 
medicine. We provide insight into the effect of stratification on estimation of standard errors and size and power of statistical hypothesis tests and 
the use of minimization randomization as another method to create covariate balance between treatment groups. We close with current challenges 
In covariate adjustment in RCTs that use restricted mean survival time, win statistics, new estimands, allow treatment crossover and tissue-agnostic 
clinical trials. 
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Introduction 

This paper deals with covariate adjustment in randomized 
controlled trials [RCT] with a time to event endpoint. These trials 
are usually the pivotal trial leading to a new drug application and 
occur at the end of a long clinical development program. The term 
survival time will be used throughout but time to event could also 
be progression-free survival time, time to dropout, time to adverse 
event, etc. 

The covariates are patient data measured at baseline such as 
age, gender, stage of disease, white blood count, etc. Adjustment 
tends to provide a more precise estimate of the treatment effect. 
One obvious form of adjustment is stratified analysis. Although the 
latter will be mentioned throughout the emphasis will be placed 
on adjustment through log linear models. The log linear models 
can also be used to find covariates that are prognostic factors that  

 
might inform what types of patients can benefit from a particular 
intervention. This type of analysis is a vital part of the new initiative 
for precision or personalized medicine. 

Past

There is a long history of baseline covariate adjustment in 
oncology. Originally analysis was based on landmark estimates 
e.g., three-year survival, five-year survival etc. This analysis did not 
consider dropouts or censored observations. The treatment effect 
was quantified by the odds ratio and the model used for adjustment 
was the logistic [1].  Later Kaplan-Meier life table methods were 
introduced [2]. These methods incorporated censored survival 
times. The Cox proportional hazards regression model used the 
Kaplan-Meier estimates to measure treatment effect by the hazard 
ratio [3]
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Both the logistic and proportional hazards models allowed for 
assessing the relative importance of baseline variables on survival 
time. After several years of using these models to find prognostic 
factors it was found that the covariates associated with survival 
were strongly related to treatment. Predictive variables for, say, lung 
cancer varied depending on the treatments used. When ineffective 
treatments were used no prognostic factors were found because no 
patients had favorable survival. When highly effective treatments 
were used no prognostic factors emerged because all patients had 
favorable survival times regardless of baseline characteristics. It is 
in the middle ground that we found prognostic factors depending 
on the treatments used. Of course, the degree of censoring in the 
survival data can also influence our ability to identify prognostic 
factors. 

Present

Proportional hazards regression methods and stratification 
are the principal methods of covariate adjustment today. Almost all 
pivotal RCTs use proportional hazards regression analysis for the 
survival endpoint and a stratified log rank test with stratification 
based on same variables used for randomization. One example 
is the Keynote 024 trial of pembrolizumab vs chemotherapy for 
PD-L1 positive non-small cell lung cancer, Here the stratification 
factors were ECOG performance status, histologic type and region 
of enrollment [4].

In the past, germline or somatic mutations might have been 
a covariate and / or stratification factor but today oncology trials 
are often conducted only for patients with specific mutations. An 
example would be the trial of the experimental treatment TAS-
102 in patients with metastatic colon cancer and KRAS mutation. 
Within the RECOURSE RCT patients were stratified on KRAS type 
(wild type or mutant), time from initial diagnosis and metastasis 
and geographic region with a stratified log rank test for overall 
survival [5].

While details of stratified log rank test and covariate adjustment 
are usually well-specified in clinical trial protocols for final data 
analysis the details of if and how covariate adjustment will be 
handled in a planned interim analysis are often not specified. A 
common practice is use of a stratified log rank statistic without 
model-based covariate adjustment, but this must be pre-specified 
in the protocol and statistical analysis plan. 

The U.S. Food and Drug Administration recently issued a non-
binding draft guidance to industry on covariate adjustment [6].  This 
guidance calls attention to several items that might be overlooked 
by sponsors preparing new drug applications to the agency. The 
guidance distinguishes between conditional analysis of treatment 
effect (subgroup effects) and unconditional treatment effect (overall 
effect). Assuming treatment effect is measured by the hazard ratio, 
due to the principal of non-collapsibility the conditional treatment 
effects can differ from the unconditional treatment effects even 
when the treatment effect is identical across subgroups [7]. For 
this reason, sponsors must report subgroup-specific hazard ratios 
as well as overall hazard ratio even if the principal purpose of 

covariate adjustment was for increased precision rather than to 
identify prognostic factors. The FDA prefers that models that find 
treatment-covariate interactions not be submitted as primary 
analysis but as supporting analysis which can help the FDA write a 
drug label that prescribing physicians can understand. 

Stratification is sometimes accompanied by minimization 
randomization. Under this scheme a random assignment can be 
overruled if such assignment would cause a trial-wide treatment 
imbalance in a covariate. The trial protocol would specify a 
threshold, t, say t=3. If a random assignment would cause an 
imbalance in any covariate greater than or equal to 3 then a biased 
coin randomization is performed where the other treatment is 
selected with high probability, say 0.90. The latter is included to 
preserve randomization. Although this method appears in oncology 
clinical trial protocols the regulatory attitude toward this procedure 
is still unclear. An early paper on minimization was by Simon and 
Pocock [8]. Taves provides an overview of this procedure [9]. 

Various authors have investigated the effect of stratification 
on baseline variables with or without proportional hazards 
adjustment in terms of estimation of standard errors, size, and 
power of statistical hypothesis tests [10-12] Groenwold, White and 
Donders at al have provided insight on handling of missing baseline 
covariates [13] and Herson has described procedures in the face of 
discovery of fraud in reported baseline covariates [14].

Future

In this section we look at emerging analytic methods and 
oncology trial types for which model adjustment for covariates 
have not yet been developed or are in their infancy. Stratified 
methodology without model adjustment would apply to all 
methods. 

Researchers have raised questions about blindly applying the 
proportional hazards regression model when there is a question as 
to the applicability of the proportional hazards assumption.

Three new methods have been proposed for survival analysis 
that do not require this assumption. Restricted Mean Survival Time 
(RMST) considers the distance between survival curves occurring 
prior to a maximum time point. [15] The latter point is generally 
specified at a time post-treatment start where only a few censored 
patients remain in follow up. Karrison and Kocherginsky describe 
non-linear model adjustment for RMST through averaging over all 
covariates and show that this method can yield increased efficiency 
[16].  Pak et al [17] and Uno, Claggett and Tian et al [18] compare 
traditional survival analysis methods with RMST estimates for 
actual recent oncology clinical trials. While covariate adjustment 
can always be addressed by traditional stratification and there are 
many advantages of RMST over traditional methods a the authors 
are not presenting methods of model-based covariate adjustment. 
However, a preliminary analysis by RMST methods and a sensitivity 
analysis by RMST would yield sponsors and regulators important 
information on treatment effect although many would prefer 
covariate adjustment by non-linear models to be comparable with 
the proportional hazards tradition.
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Another approach to survival analysis that does not require 
the proportional hazards assumption is found in a category 
becoming known as “win statistics”. These methods compute 
wins and losses by considering all paired differences in survival 
time between patients within treatments. The wins are defined 
by the number of times the experimental treatment survival time 
exceeds a comparison with a control group survival time. Losses 
are when the difference is opposite. Censored observations are 
easily incorporated. The generalized pairwise comparison method 
considers the difference in wins and losses [19] while the win ratio 
method considers the ratio of wins to losses [20]. These methods 
can be applied on a stratified analysis, but no model covariate 
adjustment currently exists. Like RMST a these methods are today 
useful in sensitivity analysis. 

Since the passage of the Twenty First Century Medicines Act by 
the U.S. Congress the FDA is interested in sponsors incorporating 
real world data (RWD) from electronic health records, insurance 
claims databases, disease registries, aggregator databases etc. 
[21]. The recent paper by Jamielita, Li and Burke et al indicates the 
complexity of analyzing RWD and taking baseline covariates into 
account [22].

The International Council on Harmonization (ICH) and FDA 
have issued their guidance E9 (R1) which indicates that sponsors 
must take intercurrent events like dropout, rescue medication 
etc. into account and this might require estimands other than 
the common treatment strategy estimand (also known as intent 
to treat) [23]. Ratitch, Bell, Mallinckrodt et al describe the new 
estimand landscape [24].  Some new estimands such as hypothetical 
and those depending on counterfactual assumptions will eventually 
require methods of covariate adjustment.

For ethical reasons many oncology clinical trial protocols today 
allow patients treated by the control group to crossover to the 
experimental treatment group in case of treatment failure or after 
unmasking at the end of the clinical trial. It is desired to analyze the 
entire survival time of all patients not just the time on their original 
treatment group. The counterfactual method of rank-preserving 
structural failure time model [25] is used in this analysis. Recently 
Korhonen, Zuber and Branson et al used this method to analyze 
survival time in the RECORD-1 trial of everolimus in metastatic 
renal cell carcinoma [26].  They assume that randomization is 
sufficient to ensure reasonable baseline balance in covariates, so no 
adjustment is attempted. In trials where the primary time to event 
endpoint is progression-free survival (PFS) traditional analysis 
with stratified log rank or proportional hazards regression may 
be sufficient. When FDA requests data on overall survival in the 
face of crossover the rank-preserving method without correction 
for covariates is considered useful as supportive information 
because the method depends on assumptions that are difficult to 
verify. Hence the intent-to-treat analysis with stratified log rank 
and proportional hazards regression analysis is still considered 
primary for overall survival. 

We are now seeing the emergence of tissue-agnostic clinical 
trial designs. These trials do not treat patients of a single organ site 

but rather patients who were diagnosed with a certain mutation 
that appears in multiple organ sites. The FDA has issued a recent 
guidance for these trials [27] Seligson, Knepper and Ragg et al 
summarize recent trials for pembrolizumab, larotractinib and 
entrectinib across organ sites [28].  The ROAR trial for defratinib 
in patients with BRAF V600E-mutated rare cancers was an open 
label phase II trial [29]. A Bayesian hierarchical model is used 
with borrowing between histology types. It appears that currently 
the tissue-agnostic clinical trial designs are far from considering 
adjustment for covariates or even stratification. It will be interesting 
to see if oncologists are willing to put aside their well-known organ 
site prognostic baseline covariates when other prognostic factors 
emerge across organ sites. We must wonder if a lung cancer expert 
would accept prognostic factors that emerge as an average over 
various organ sites rather than the lung cancer prognostic factors 
that are well-accepted in the lung cancer community.  

Conclusion

This paper has reviewed the history, present day and emerging 
issues of the important task of baseline data covariate adjustment 
in oncology pivotal RCTs with time to event endpoints. Stratified 
randomization, log linear models, non-parametric methods, or 
some combination of these. The common thread of covariate 
adjustment is to create balanced treatment comparisons and to 
use this information to identify patient types likely to benefit 
from treatment. Much research is needed to improve precision 
of estimates in the traditional oncology RCT but challenges for 
methodology development are needed to deal with methods that 
are used in lieu of proportional hazards regression, trials that use 
novel estimands, those that rely on real world data, trials that allow 
treatment crossover and the new tissue-agnostic clinical trials. 
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