
Page 1 of 20

Moran Spatial Filter Eigenvector Mapping and Field 
Verification of Latent Non-Zero Autocorrelation 

Georeferenced Clusters Stratified by Homeless Time 
Series Socioeconomic Causation Covariates in Tampa-

Hillsborough County, Florida

Christopher Villatte1, Russel Kirby1, Leisa Stanley2, Ricardo Izurieta1 and Benjamin G Jacob1*
1College of + Public Health, University of South Florida, USA
2Healthy Start Coalition of Hillsborough Count, University of South Florida, USA

ISSN: 2641-6336                                                                            DOI: 10.33552/ABBA.2020.04.000585

Annals of 
Biostatistics & Biometric Applications 

Research Article     Copyright © All rights are reserved by Benjamin G Jacob

This work is licensed under Creative Commons Attribution 4.0 License  ABBA.MS.ID.000585.

*Corresponding author: Benjamin G. Jacob, College of Public Health, University of 
South Florida, United States.

Received Date: March 2, 2021

Published Date: March 30, 2021

Abstract

In the context of spatial regression analysis, several methods are employable to control for non-asymptotic approximation effects rendered from 
inconspicuous spatial dependencies amongst georeferenced, homeless-related, socioeconomic stratified, time series, observational prognosticators. 
Maximum likelihood or Bayesian approaches account for spatial dependencies in a parametric framework, whereas recent spatial filtering 
approaches focus on non-parametrically removing spatial autocorrelation. In this article we propose a semiparametric spatial filtering approach 
that allows homeless researchers to deal explicitly with (a) spatially lagged autoregressive models and (b) simultaneous autoregressive spatial 
models. Our primary assumption was temporally dependent, homeless stratified, socioeconomic, causation covariate, clustering propensities may be 
revealed employing orthogonal, synthetic, eigenfunction, spatial filters. We created a spatial weights matrix in PROC AUTOREG so that neighboring 
socioeconomic stratified, frequency samples received a weight that was proportional to the calculable inverse distance measurement between a 
geographic sub-county, time series, sampled geographic location and its neighbor. We spatially tabularized Euclidean distances in ArcGIS along the 
links in the eigenfunction eigen decomposition analysis. Our hypothesis was that multivariate autoregressively dependent, diagnostic, frequency 
model, spatial filter eigenvectors could cartographically and geo-statistically distinguish among the effects of non-parameterizable non-Gaussian 
non-normalities [e.g., spatial heteroscedasticity(i.e, uncommon variance)],in Euclidean distance measurements between dereferenceable homeless  
geographically stratified (henceforth geo-stratified), hot and cold spot, sub-county clusters employing  a stochastic  simulation of temporally 
regressable, socioeconomic indexed prognosticators. As in one nonparametric spatial filtering approach, a specific subset of eigenvectors from 
the transformed spatial link matrix in PROC AUTOREG captured dependencies among the disturbances in the empirically stratified datasets of 
the regressed, homeless, socioeconomic cluster model eigen-estimators. However, the optimal subset in the proposed orthogonal spatial filtering 
model was identified more intuitively by an objective function that minimized latent, non-zero autocorrelation, in the sampled eigenvectors rather 
than maximized a model fit. The proposed objective function had the advantage that it lead to a robust and smaller subset of parsimoniously 
selected eigenvectors. An application of the proposed eigenvector spatial filtering approach in Proc Autoreg employed an empirical parameter 
estimator dataset for optimally delineating the sub-county georeferenced hot/cold spot clusters in Tampa-Hillsborough County. The top causes 
of homelessness based on the eigenvector, spatial filter geo-stratified, high positively autocorrelated, georeferenceable, hot spot clusters were (1) 
unemployment and 2) drug usage/ transaction. In slightly positive autocorrelated clusters homelessness causation was identified as 1) previous 
incarceration, 2) medical care/ food shortage and 3) domestic violence especially for female victims. Mental health was the primary, diagnostic 
frequency covariate in the residually negatively autocorrelated clusters. The vast majority interviewed in the negatively autocorrelated cluster 
during field validation (“ground trothing”) exercises had severe psychological illnesses that remained largely untreated. An observational study 
found significant levels of mobility aid are required among the homeless in Tampa. A collection of time series, spatial autocorrelation socioeconomic, 
time sensitive, stratified, frequency, cluster indexed maps should be created and field validated. These maps may be employable by health and 
human service agencies in Tampa-Hillsborough County to predictively count the population, inventory resources, and increase awareness of 
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Introduction
Historically, epidemiological, homelessness, forecast, risk mod-

els have been used to assess the likelihood of facing homelessness 
at the individual or household level. Most commonly, researchers 
have attempted to identify the socioeconomic co-factors that cor-
respond to the spatial distribution of homelessness, employing geo 
referenceable time series data on intercity homelessness rates as 
the dependent variable. Found that the availability of low-income 
housing and lower per capita expenditures on mental health care 
were significantly related to homelessness rates but that poverty 
and unemployment rates were not. In a test of several more care-
fully specified frequency models of intercity homelessness rates, 
Burt (1992) found that per capita income, the poverty rate, and 
the proportion of single person households combined to explained 
more than half the variation in homelessness rates in high-growth 
cities. The authors interpreted this as evidence that more affluent 
households and a greater number of households with single peo-
ple put pressure on the housing choices of poorer people. Based 
on these literature contributions, homelessness appears to vary by 
socioeconomic conditions, although specific study’s findings have 
been inconsistent. 

Longitudinal research has suggested the potential relevance of 
a structural and dynamic model of homelessness, and has raised 
questions about the adequacy of socioeconomic, indexed, point 
prevalence, temporal data for measuring the homelessness prob-
lem. Analyses of administrative data a national telephone survey 
and a housing survey in New York City found that as much as 3 
percent of the population experienced an episode of “literal” home-
lessness between 1988 and 1992, suggesting a high degree of turn-
over in the homeless population. Longitudinal research based on 
tracked samples of homeless persons has also documented the 
often transitory, intermittent nature of homelessness. Most shelter  

 
users appear to mobilize resources and community ties to avoid the 
shelters most of the time. Hopper has characterized these informal 
networks as the “economies of makeshift.” these support systems, 
and the factors that strain or enhance their supportive capacity, yet 
statistical and cartographic variables associated within these net-
work paradigms are not well understood (see related discussions 
in Burt. An observational study was conducted in the field that 
found significant usage of mobility aid amongst the homeless pop-
ulation in Tampa. The study found that 12% of the homeless pop-
ulation in Tampa required mobility aid of some sort.Newer models 
developed by Bramley is a complex version of a simulation models 
for mapping homelessness in Tampa –Hillsborough County. It is the 
main tool currently used to produce projections of aggregate levels 
of homelessness across UK regions. The basic idea behind this ap-
proach is that housing needs are the outcomes of households, indi-
viduals and firms interacting in interconnected housing and labor 
markets. The model is based on a set of core functions employed 
to quantify responses to changes in economic and policy variables 
with respect to outcomes such as migration and household forma-
tion that can potentially determine housing needs. 

Poverty unemployment, and lack of affordable housing are 
commonly recognized causes of homelessness in Tampa Hillsbor-
ough County (www.samhsa.govhomelessness-programs).  These 
risk factors may be exacerbated by personal vulnerabilities such 
as  mental and substance use disorders,  trauma and violence,  do-
mestic violence, justice-system involvement, sudden serious illness, 
divorce, death of a partner, and disabilities. In order to implement 
county-level social programs in Tampa-Hillsborough County to 
reduce factors associated with homelessness, exact locations may 
need to be determined using spatial statistical algorithmic tech-
niques. Statistical geography is the study and practice of collecting, 

targeted services especially for homeless pregnant women and children using ArcGIS and SAS predictive analytical tools. These time series 
autocorrelation maps may be constructed employing a selection of eigen decomposable eigen-orthogonalize, synthetic eigenvectors as rendered 
from an empirical geographically sampled, frequency dataset of geo-stratifiable, socioeconomic cluster, causation eigen-covariates quantitated 
within an autocorrelation   connectivity matrix in PROC AUTOREG. New supportive facilities and shelters for the homeless should be located in 
areas with a high availability of employment, inexpensive or free medical care and food in Tampa-Hillsborough County. Furthermore, free mobile 
drug addiction programs and family domestic violence interventions should be implemented in the county. To diagnose residual autocorrelation, in 
empirically sampled, time series, homeless, socioeconomic, diagnostic covariates, Proc Autoreg procedure can perform a first order autocorrelation 
employing generalized Durbin-Watson (DW) statistics and their marginal probabilities. Exact p-values may be reported for generalized DW tests to 
any specified order in an homeless socioeconomic, time series, cluster model. Constructing a Bayesian Hierarchical Clustering (BHC) algorithm in 
Python may efficiently reveal clustering georeferenced stratified socioeconomic, time series covariates. This algorithm may define a probabilistic 
model of sub-county, homeless socioeconomic datasets which may be used to compute the predictive distribution of a sampled socioeconomic 
georeferenced, geo-stratified, sub-county, capture point and the probability of it belonging to any of existing clusters in the tree. The algorithm 
uses a model-based criterion to decide on merging clusters rather than an ad-hoc distance metric.  Hence, Bayesian hypothesis testing may be used 
to decide which merges are advantageous and to output the recommended depth of the tree which may be interpreted as a novel fast bottom-up 
approximate inference method for a Dirichlet process (i.e., countably infinite) mixture, homeless socioeconomic, aggregation bias model. In so doing 
the BHS may allow a hierarchical representation of the sampled homeless socioeconomic data, incorporating both finer to coarser grained clusters, 
in such a way that a researcher can also make forecasts about new sub-county data points, compare different hierarchies in a principled manner, and 
automatically discover interesting levels of the hierarchy to examine.

Keywords: Autocorrelation; Eigenvector; Homeless; Semi-parametric; Spatial filters; Tamp-Hillsborough
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analyzing and presenting data that has a geographic or real di-
mension such as census or demographics data. It uses techniques 
from spatial analysis, but also encompasses geographical activities 
such as the defining and naming of geographical regions for spatial 
statistical purposes. 

Spatial statistical autocorrelation analysis frequently employs 
model-based inference, the dependability of which is based upon 
the correctness of posited assumptions about a model’s error term. 
Spatial autocorrelation is the correlation among sampled frequen-
cy values of a single variable across a two-dimensional (2-D) sur-
face that are geographically tied together by an underlying spatial 
structure, introducing a violation of the independent observations 
assumption of classical statistics. Its many interprets include: a nui-
sance parameter, self-correlation, map pattern, a diagnostic tool, a 
missing variables surrogate, redundant information, a spatial pro-
cess mechanism, a spatial spillover, and the outcome of areal unit 
demarcation. It can be quantified with various indices, including 
the Geary Ratio and the Moran Coefficient, the statistically most 
powerful of the two measures. These two indices are negatively re-
lated (Griffith [1]).

Eigenvector spatial filter [ESF] regression incorporates spatial 
autocorrelation into the linear predictor of a generalized linear 
model (GLM) with a set of spatially structured, synthetic control 
variables from a spectral decomposition of the spatial connectivity 
matrix. If yi is a normally distributed set of spatially autocorrelated, 
socioeconomic stratified, homeless, time series, frequency-depen-
dent observations taken at geolocations i=1, 2..., n, then following 
Griffith(2011,Theorem1-a). We may view yi as a mixture of normal 
distributions yi =y∗ i +θi where y∗ i ∼N (µi, σ2) is a spatially un-
structured (exchangeable) process and θi ∼N (0, ω2) is a spatially 
structured (ordered) process. Subsequently, y|µ, ν ∼N (µ, ν2I), ν2 
= σ2 +ω2 (Eqn.1.1). This conceptualization highlights how spatial 
autocorrelation could inflate observed variance statistically in a 
homeless, frequency, epidemiological, vulnerability-oriented, pre-
dictive, temporal model and, while the expectation of the mean is 
unaffected by spatial autocorrelation, failure to model spatial struc-
ture in any finite sample tends rendered may produce larger esti-
mation errors. 

To estimate θi and recover y∗ in a time series homeless cluster 
forecast, vulnerability model in this research, we employed ESF re-
gression and generated the eigenfunctions of a transformed spatial 
connectivity matrix C, where cij =1 if polygons i and j were sampled 
neighbors (e.g., geographically sampled socioeconomic predictors) 
and all cii = 0. With projection matrix M = (I − 11′/n), where I was 
the identity matrix and 1 an n-by-one vector of ones, an eigenfunc-
tion decomposition of the Moran’s Coefficient (MC) matrix (which 
appears in the numerator of the MC) was generated in AUTOREG 
which eventually rendered n mutually orthogonal, zero mean eigen-
vectors E from a time series dataset of socioeconomic explanators 
and their associated eigenvalues Λ. Each Ei delineating a socioeco-

nomic frequency variable temporal sampled in the Tampa-Hillsbor-
ough County study site expressed a distinct georeferenced pattern 
of potential spatial autocorrelation, with the degree of it indexed by 
its corresponding eigenvalue λi. 

The Moran eigenvector approach in ArcGIS involved delin-
eating spatial patterns generated from an empirical sampled, 
frequency dataset of georeferenced, socioeconomic, homeless 
stratified, parameterized, estimator, time series, maps of spatial 
filter eigenvectors by choosing suitable orthogonal patterns and 
adding them to a generalized linear model (GLM). The Moran’I 

statistic for spatial autocorrelation was given by
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 In practice, strong priori information on spatial 

autocorrelation and spatial filters is used to reduce the dimension-
ality of βE in predictive epidemiological models [Griffith 2005, Ja-
cob et al. 2009]. A priori probability refers to the likelihood of an 
event (e.g., homelessness) occurring when there is a finite amount 
of outcomes (e.g., loss of employment, alcoholism, depression) and 
each is equally likely to occur. The outcomes in a priori probabili-
ty in a time series, homeless frequency, socio economic, forecast, 
vulnerability model may   not be influenced by the prior outcome. 
Or, put another way, any results to date will not give you an edge in 
predicting future results [e.g., hospitalization]. A priori probability 
is also referred to as classical probability. A priori probability in a 
homeless regression model may stipulate that the outcome of the 
next event is not contingent on the outcome of the previous event. 
A priori may also remove independent users of experience. Since 
the results are random and non-contingent, a homeless researcher 
or epidemiologist may not deduce the next outcome as rendered 
from the regression of the frequency county, predictive risk model, 
socioeconomic parameterizable estimators. 

Since most model applications in epidemiological homeless re-
search in the literature are concerned with positive spatial autocor-
relation, (e.g., the geographic distribution of some variable across 
a map, high values tend to be geographic neighbors of high values, 
intermediate values tend to be geographic neighbors of intermedi-
ate values, and low values tend to be geographic neighbors of low 
values). the eigenvectors representing negative spatial autocorrela-
tion (whose eigenvalues are negative) have not been considered. A 
homeless data analyst or epidemiological collaborator may be able 
to optimally quantitate negative spatial autocorrelation in a home-
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less frequency, temporal, socioeconomic, risk map by modelling co-
efficients set to zero. Quantitating negative spatial autocorrelation 
in a homeless, stratifiable, frequency, socioeconomic, prognostica-
tive, epidemiological, risk model may be even simplified further by 
the exclusion of eigenvectors that represent only trace amounts of 
spatial autocorrelation. This may be performed by dropping all ei-
genvectors for which λi/λmax < T, with threshold T set at or below 
0.25. In so doing, county geographic locations (henceforth, geolo-
cations), eigen decomposable eigenvectors with their coefficients 
may be robustly parsimoniously estimated.

The most common eigenfuction eigen-decomposition algo-
rithmic estimation procedure takes frequency eigenvectors from a 
candidate set and applies a stepwise variable selection procedure 
to identify a final subset of eigenvectors to include and accept the 
maximum likelihood estimate of their coefficients. The stepwise se-
lection procedures. In so doing, information criteria [e.g., Akaike’s 
Information Criteria. (AIC) or Bayesian Information Criteria (BIC), 
coefficient p-values, residual sum of squares or residual spatial au-
tocorrelation as their objective function.

AIC and BIC are both penalized-likelihood criteria. Penalized 
likelihood estimation is a way to take into account model com-
plexity when estimating parameters of different models. Basical-
ly, instead of conducting simple maximum likelihood estimation, 
a homeless researcher would maximize the log-likelihood minus 
a penalty term which, generally increases with the number of pa-
rameters. For instance, if a researcher is fitting a Gaussian mixture 
temporally dependent, homeless model, optimizing a penalized 
log-likelihood can help choose between models with a different 
number of mixture components, or between a model where the 
covariances are proportional to identity (e.g., one socioeconomic 
parameter per covariance) vs diagonal (dparameters) vs general 
positive symmetric matrices (d(d+1)/2 parameters). The intuition 
behind this is that adding socioeconomic parameters to a homeless 
model will give a better fit to the data, thus a higher like lihood. The 
AIC or BIC for a model is usually written in the form [-2logL + kp], 
where L is the likelihood function, p is the number of parameters in 
the model, and k is 2 for AIC and log(n) for BIC.

The formulated AIC would be an estimate of a constant plus the 
relative distance between the unknown true likelihood function of 
the homeless time series data and the fitted likelihood function of 
the model, so that a lower AIC means a model is considered to be 
closer to the truth. BIC is an estimate of a function of the posterior 
probability of a model being true, under a certain Bayesian setup, 
so that a lower BIC means that a model is considered to be more 
likely to be the true model. Both criteria are maybe vital for home-
less forecast mapping vulnerable geographic locations in a county 
or district based on various assumptions and asymptotic approxi-
mations. 

Alternatively argue that a fixed number of orthogonal spatial 
filter eigenvectors may be included based only on tessellation size. 

Outside of the variable selection probabilistic paradigm apply re-
sidual maximum likelihood (REML)to estimate the candidate ei-
genvector coefficients as a set of random effects (RE-ESF). In sta-
tistics, the restricted (or residual, or reduced) maximum likelihood 
(REML) approach is a particular form of maximum likelihood esti-
mation that does not base estimates on a maximum likelihood fit of 
all the information, but instead uses a likelihood function calculated 
from a transformed set of data.

Our assumption was that a stratified dataset of homeless, time 
series, indexed, socio-economic regression variables, temporally 
sampled, in Tampa Hillsborough County may be measurable at a 
geographic resolution and as such, they would render cluster in-
dexed by moderate, positive and negative spatial autocorrelation. 
Satellite remotely sensed images tend to have strong to marked 
positive spatial autocorrelation. To date, few empirical examples of 
spatial autocorrelation in the literature have been reported on any 
frequency clustered, time series, stratified, socioeconomic parame-
ter estimator homeless frequenct dataset, although it relates to sit-
uations of spatial competition which may be applicable for forecast 
mapping, for example, drug usage/transaction, geographic geoloca-
tions where many homeless may reside close study by Didenko and 
Pankratz indicated that two-thirds of people living on the streets 
blamed alcohol and/or drugs for their homelessness. 

One of our principal assumptions about the latent autocorrela-
tion in the time series, stratified frequency sampled, georefernced 
parameter estimators for mapping Tampa Hillsborough County 
homelessness, study site  was that it was based on the concept 
that individual error terms  originated from specific sampled, so-
cioeconomic variables (e.g., previous incarceration of a migrant 
farm worker) whose entries were thoroughly mixed through ran-
domness in regression space with multiple other diagnostic co-
variates. Moreover, we assumed that the probability of a homeless 
sampled, income–based, aggregation-related explanatory predic-
tor, for example, taken on by one of a model’s frequency, error term 
entries may not affect the probability of a value taken on by any 
of the remaining  estimator error term entries (i.e., the indepen-
dent observations assumed in classical statistics).Non-zero spatial 
autocorrelation in dereferenceable, empirical sampled, frequen-
cy, homeless, time series, county sampled, socioeconomic, clus-
ter-stratified data would violate this assumption. 

Another assumption we had was that time series, sampled, 
homelessness, frequency -oriented, explanatory, aggregation-bi-
ased, predictor variables without residual autocorrelation, would 
not exhibit a geographic expression when mapped; with it most 
of the explanators (e.g., georeferenced unemployment regressor) 
would exhibit some type of spatial organization across geographic 
space (e.g., geolocation of a zip code hotspot). Zero spatial auto-
correlation means geographically random phenomena and chaot-
ic landscapes Griffith [1]. In this research, spatial autocorrelation 
geographical methods were employed to study aspects of the 
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homelessness in Tampa-Hillsborough County Florida.by identify-
ing georeferenced, socioeconomic stratified, georeferenced, county 
clusters. We describe the form, direction and strength of the rela-
tionship exhibited by sample, quantitative, explanatory, regressive-
ly autocorrelated, temporal sampled, homelessness, stratified, clus-
ter, frequency variables measured by a single set of n socioeconomic 
observations. A scatterplot in ArcGIS is employed to visualize this 
relationship, with a conventional correlation coefficient describ-
ing the direction and strength of a straight-line relationship of the 
overall homeless-related, occurrence, abundance and distribution, 
and their temporal frequency patterns. A variant of conventional 
correlation [i.e., serial correlation] pertaining to the correlation 
between sampled, stratified, homelessness, frequency-oriented en-
dogenous prognosticators such as presence of mental illness and 
others were identified. 

Morans I coefficient estimates were constructed which quan-
titated the relationship between the sampled, explanatory socio-
economic stratified, discrete intger values in the frequency-ori-
ented, sampled dataset of homeless explanatory georeferenced 
variables at one geolocation (e.g., presence of food refugee camp) 
in geographic space and subsequently cartographically quantitat-
ed nearby sampled values in ArcGIS [e.g., Euclidean distance mea-
surements to a shelter]. These neighboring values were identified 
by an n-by-n binary, geographic, connectivity/weights matrix, C; in 
ArcGIS.   In our model if two sampled, time series, homeless–re-
lated geolocation, aggregation stratified, observational predictors 
were neighbors, then cij = 1, and if not, then cij = 0. In ArcGIS two 
areal units are deemed neighbors if they share a common non-zero 
length boundary). From our extensive research in the literature we 
hypothesized that a positive spatial autocorrelated, socioeconom-
ic stratified, homeless, forecast, model output  would signify that 
geographically nearby    sampled frequency values of a  stratified, 
behavioral variable  (e.g., opiate usage in a teenage pregnant moth-
er) would tend to be similarly aggregated  on a map in a specific, 
dereferenceable, centroid   geolocation ( e.g., an low, commercial 
urban parkland).We assumed that in Tampa-Hillsborough County, 
homeless-related, socioeconomic, explanatory, cluster-oriented, 
frequency sampled, diagnostic variables may tend to be moderately 
positively spatially autocorrelated because of the way phenome-
na are geographically organized in the County. Demographic and 
socio-economic characteristics like population density and house 
prices are good examples of variables exhibiting positive spatial au-
tocorrelation in Tampa. For example, neighborhoods in the city tend 
to be socioeconomically systemized, in such a fashion that clusters 
of households with similar preferences (e.g., dereferenceable, real 
estate homestead values >$250,000) are in separate sectors. Home-
less populations in Tampa may tend to organize themselves in a 
way that concentrates similar attributes on a map—creating posi-
tive spatial autocorrelation among many socioeconomic explanato-
ry predictor variables—with no government policies nor activities, 
such as city planning and zoning, thus reinforcing such patterns.

To parsimoniously construct the prognosticative, homeless, fre-
quency-oriented, risk model we first calculated the georeferenced 
Euclidean distance separating the sampled socioeconomic strat-
ified predictors in geographic space, in ArcGIS, and then squared 
the difference between their respective feature attribute prognos-
ticative values. Next, distances were grouped into frequency ranges 
having multiple paired differences, and then group averaged. Sub-
sequently, the distances and the squared attribute differences in the 
frequency-sampled, homeless, socioeconomic stratified, time series 
prognosticators were autocorrelated. Our assumption was that 
semi variance in an empirical stratified dataset of georeferenced, 
homeless, stratified, time series, dependent, frequency values may 
equal these squared attribute differences under certain conditions 
(e.g., if the product is divisible by 2 in a largesampled dataset). Semi 
variance is a representation in statistics of the analysis of data that 
fall below the mean value of a set of data. We also assumed that for-
mulating the semivariance in a frequency-oriented, georeferenced, 
empirical dataset of socioeconomic stratified, temporal sampled, 
homeless, parameterizable regression estimators may require 
summing the average of the squared deviations of the sampled vari-
ables by their covariate coefficient, discrete, integer values that fell 
below the mean. 

Finally, we assumed that a frequency-oriented, homelessness 
stratified, discrete, time series, indexed graph whose vertical axis 
was quantifiable based on an average semivariance, and whose hor-
izontal axis was the averaged Euclidean distance measurements of 
sampled coordinates may be plotted in space and the distance sepa-
rating locational predictors [e.g., (i and j) may be optimally deduced 
when δij is a binary 0/1 variable. By considering the forecasted re-
gression returns as uncertain variables, proposed a multi-period 
mean semivariance portfolio optimization malaria habitat model 
with real-world constraints, in which operational field costs, car-
dinality and bounding constraints were considered. The authors 
provide an equivalent deterministic form of mean–semivariance 
model under the assumption that the predicted habitat of hyper 
larval productivity included uncertain variables. After that, a mod-
ified imperialist competitive algorithm was developed to solve the 
corresponding optimization problem. Finally, a numerical example 
was given to illustrate the effectiveness of the proposed habitat 
model and the corresponding algorithm which was subsequent-
ly field validated (“ground truthed’) which revealed a 92 percent 
specificity rate.

As such, here we assumed we would be able to denote wheth-
er or not both sampled i and j belong to a georeferenced homeless 
stratified, geospatial, temporal cluster. These types of analyses, we 
assumed, could identify georeferenceable, socioeconomic explana-
tory co-factors that correspond to the spatial distribution of home-
lessness clusters in Tampa-Hillsborough County. In this analyses zip 
code stratified, homelessness rates were the dependent/response 
variable. Our present study is an attempt to contribute to the lit-
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erature the continuing integration of a structural and dynamic, 
forecast-oriented, vulnerability, spatial autocorrelation frequency 
model of homelessness in Tampa-Hillsborough County, for begin-
ning to answer the “where to target” for planners of homelessness 
prevention programs. Further by adding to researchers’ tools for 
investigating the structural aggregation correlates of homelessness 
(or the “what to target” question facing county planners) other in-
vestigators may also exploit county sampled data for implementing 
sustainable interventions (e.g., mobile needle exchange programs 
and maternity care, properly geolocated food camps, such as those 
close to shelters, etc.). In this article our objectives were to a) de-
fine geospatialized, frequency clusters stratified by socioeconomic 
homeless related explanatory covariates using Moran’s I statistics 
and b) to conduct extensive field verification (e.g., video inter-
views) on victims in hot and cold spot, georeferenced designated 
geospatial clusters to precisely determine causation covariates of 
homelessness in Tampa-Hillsborough County, Florida. 

Methods and Materials
Hillsborough County  is a  county  in the  U.S. state  of  Florida. 

In the  2010 census, the population was 1,229,226 making it the 
fourth-most populous county in Florida and the most populous 
county outside the Miami metropolitan area. A 2018 estimate has 
the population of Hillsborough County at 1,436,888 people, which 
itself is greater than the populations of 12 states according to their 
2018 population estimates. Its county seat and largest city is Tampa. 
Hillsborough County is part of the Tampa–St. Petersburg–Clearwa-
ter Metropolitan Statistical Area. According to the U.S. Census Bu-
reau, the county has a total area of 1,266 square miles (3,280 km2), 
of which 1,020 square miles (2,600 km2) are land and 246 square 
miles (640 km2) (19.4%) are covered by water. About 158.27 miles 
(254.71 km) of shoreline are on Tampa Bay.The county’s unincor-
porated area is around 888 square miles (2,300 km2), more than 
84% of the total land area. Municipalities account for 163 square 
miles (420 km2). The modern boundaries of the county place it mid-
way along the west coast of Florida (Figure 1).

Figure 1: Map of Tampa-Hillsborough County.

Sociodemographic data

According to the 2019 Homeless Count in Hillsborough County, 
on any given night there are  at least 1,650 homeless men, wom-
en, and children in Tampa-Hillsborough County.  These are people 
who are sleeping on the streets, behind buildings, in encampments, 
in cars, emergency shelters and transitional housing. According to 
the  2019 Homeless Point-in-Time Count,  we know the following 
about who is homeless: 38% are female, 19% are under the age of 

18, 10% have served in the U.S. Military, 20% are Hispanic, 18% 
report experiencing mental illness, and 16% are chronically home-
less. Tampa Hillsborough Homeless Initiative [2]. Homelessness 
happens when a person is unable to afford to pay for a place to live 
or their current home is unsafe or unstable. In 2018, Hillsborough 
County, FL had a population of 1.44M people with a median age of 
37.1 and a median household income of $58,480. Between 2017 
and 2018 the population of Hillsborough County, grew from 1.41M 
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to 1.44M, a 2.01% increase and its median household income grew 
from $54,731 to $58,480, a 6.85% increase.

Quantitating clusters in geographic space

In order to determine clustering of the GPS-indexed, homeless-
ness populations in Tampa-Hillsborough County, we employed geo-
spatially defined socioeconomic, sampled, frequency variables. For 
example, we employed the variable (the number of persons who 
are living at or below the poverty line for the past 12 months) from 
the ACS Poverty dataset to the homelessness shapefile as a new 
field in an attribute table in ArcGIS. In this way, the georeferenced, 
homeless indexed, capture points located in any given census tract 
in Hillsborough County were also associated with the number of 
people in that census tract who identified as living at or below the 
poverty line in the past twelve months. The ACS determined pover-
ty status of the individual by comparing 12 months of income to the 
poverty threshold. The homeless stratified, GPS dataset was sorted 
in an ascending pattern based on the time series regressed vari-
ables within Hillsborough County.

Explanatory covariates 

Potential regression observational socioeconomic predictors 
of homelessness in this research included 1) Age 2) Race/ethnic-
ity 3) Education level 5) Work history 6) Marriage status 7) Teen 
motherhood 8) Mental illness 9) Imprisonment and 10) Victim of 
Domestic violence. Unless otherwise noted, predictors were scored 
as 1 if present and 0 if not present.

Autocorrelation analyses

The homeless stratified, epidemiologic frequency dataset was 
stratified into georeferenced groups of population proportions 
based on their distribution, two standard deviations below and 
above the median of number of people living below the poverty 
line. In so doing, the number of individuals above two standard de-
viations from the median were inferred to be in the low socio-eco-
nomic georeferenced geolocations in Tampa-Hillsborough County, 
while individuals at the lower spectrum of two standard deviations 
below the median were taken to be in the higher socioeconomic 
zones. Additionally, the assumption for spatial independence was 
tested for the epidemiologic observations employing the Pearson 
product moment correlation coefficient [Moran’s Index(I)]. Moran’s 
I was employed as diagnostic tool for quantitating model misspeci-
fications, spatial non-homoscedasticity and outliers in the remotely 
sensed, parameter estimator, epidemiologic, homelessness, fre-
quency dataset. Homoscedasticity  describes a situation in which 
the error term (that is, the “noise” or random disturbance in the 
relationship between the independent variables and the dependent 
variable) is the same across all values of the independent variables. 
[McCulloch 1985]. Likewise, Moran’s I was employed to determine 
if the dependent variables were clustered or randomly distributed 
within a geographic space in Hillsborough County. We used PROC 
VARIOGRAM in SAS 9.4 to generate Moran’s I by computing cross 

mean of Euclidean inter-site distances between homeless explan-
atory values that were geographic neighbors. Similarly, the LAG-
DISTANCE OPTION indicated the neighborhood size in the PROC 
VARIOGRAM procedure, which was important in the computation 
of autocorrelation index for quantitating clustering propensities in 
the sampled homeless clinical and socioeconomic variables. It is of 
note that lag distance in this research was dependent on the sam-
pled county parameter estimator dataset. Our goal was to create a 
variogram that invariably provided optimal estimates of spatial de-
pendence for the underlying stochastic process within the dataset. 
The compute statement allowed averaging of binary spatial weights 
within the autocorrelation statistical process needed for the con-
struction of Moran’s I coefficient (an equivalent of regression slope 
for the Moran’s scatter plot). Using the values of LAGDISTANCE=7 
and MAXLAGS=10 we constructed a homeless frequency model in 
Proc Variogram without the Novariogram option in order to com-
pute the empirical semivariogram. 

A variogram is often defined as a measure of spatial variabili-
ty. Our strategy was that by sampling georeferenceable, socioeco-
nomic stratified, capture points close to each other, then this would 
produce typically similar outcomes compared to sampling for the 
points separated by larger distances in geographic space. Here the 
variogram distance measured the degree of dissimilarity γ(h) be-
tween the sampled, socio economic stratified, homeless  data sepa-
rated by a class of vectors h. If z(xi) and z(xj + h) were pairs of  socio-
economic explanatory samples lying within a given class of distance 
and direction, then N(h) was the number of data pairs within the 
class. Subsequently, the experimental semi variogram was defined 
in ArcGIS as average squared difference between the components 
of the sampled, socioeconomic stratified data pairs in geographic 
space employing the following equation:(1) γh=12Nh∑i=1Nhzx−
xi+h2] This spatial variability measure was a semi variogram. We 
interpolated between the sample variogram, socioeconomic strati-
fied, explanatory, time series homeless estimators. The variance of 
the entire data set is referred to as the sill and the distance at which 
the model semi variogram meets the data set variance is defined as 
the range.

We specified the CL option in the COMPUTE statement to cal-
culate the 95% confidence limits for the classical semivariance. 
The Compute Statement described how to use the ALPHA= option 
to specify a different confidence level in the, homeless, frequency, 
forecast model. We requested a robust version of the semivariance 
with the ROBUST option in the COMPUTE statement. Proc Vario-
gram rendered a plot showing both the classical and the robust 
empirical semi variograms. The Plot option to specify different 
instances of plots was featured in the empirical semi variogram. 
In addition, the autocorrelation Moran’s I statistics under the as-
sumption of randomization using binary weights was generated. 
The output from the requested autocorrelation analysis included 
the observed, computed, Geary’s c coefficients. The expected value 
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and standard deviation for each sampled homeless, clinical and so-
cioeconomic, stratified, explanatory, covariate the corresponding Z 
score, and the p-value were tabulated in the Pr >j Z j column. The 
low p-values suggested strong autocorrelation for both statistics 
types. Note that a two-sided p-value was reported, which was based 
on the probability that the observed, homeless-oriented, frequency 
coefficients lay farther away from j Z j on either side of the coeffi-
cient’s expected value—that is, lower than Z or higher than Z. The 
sign of Z for both Moran’s I and Geary’s c coefficients indicated pos-
itive autocorrelation.

The output randomization estimates from the homeless, strat-
ified, autocorrelation, frequency model was then evaluated in a 
spatial error (SE) model. An autoregressive model was employed 
whereby a sampled, temporally dependent, socioeconomic strati-
fied, explanatory variable, Y, as a function of nearby sampled home-
less-related frequency Y values [i.e., an autoregressive response 
(AR) or spatial linear (SL) specification] and/or the residuals of Y as 
a function of nearby Y residuals [i.e., an AR or SE specification].Dis-
tance between frequency- sampled, stratified homeless predictors 
was subsequently defined in terms of an n-by-n geographic weights 
matrix, C, whose cij values were 1 if the sampled  i and j were deemed 
nearby, and 0 otherwise. Adjusting this matrix by dividing each row 
entry by its row sum, with the row sums given by C1, converted this 
matrix-to-matrix W. 

The n-by-1 vector x = [x1 ⋯ xn]T contained measurements of a 
quantitative, sampled homeless, georeferenced, frequency-orient-
ed explanator for n spatial units and n-by-n spatial weighting ma-
trix  W. The formulation for the Moran’s index of spatial autocor-
relation employed in this research was:

( )

( )

( )( )
( )

( )
ij i i

n
ij ii

n w X X X X
I X

w X X
=

− −
=

−
∑
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n n
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1 1
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The values wij were the spatial weights stored in the symmet-
rical matrix  W  [i.e., (wij  =  wji)] that had a null diagonal (wii  = 0). 
The matrix was initially generalized to an asymmetrical matrix W. 
Matrix W can be generalized by a non-symmetric matrix W* by us-
ing W = (W* + W*T)/2 [see Griffith [1]] Moran’s I was rewritten in 
ArcGIS using matrix notation:

( )
T T

t T t T

n X HHWHHX n X HWHXI X
W X HHX W X HX

= =
1 1 1 1 w h e r e 

H = (I - 11T/n) was an orthogonal projector verifying that H = H2, 
(i.e., H was independent). Features of matrix W for parsimoniously 
analyzing the time series, sampled, homeless, frequency covariates 
included that it was a stochastic matrix, which expressed each ob-
served explanatory value yi as a function of the average of georef-
erenced zip code geolocation  i’s and their nearby socioeconomic, 
stratified, count data covariates. This allowed a single spatial au-
toregressive parameter, ρ, to have a maximum value of 1.

A SAR model specification was subsequently employed to de-
scribe the autoregressive variance uncertainty estimates. A spa-
tial filter (SF) model specification was also used to describe both 
Gaussian random variables. The resulting SAR model specification 
took on the following form:

( )Y I WYµ ρ ρ ε= − + +1

(2.1a) where μ was the scalar conditional mean of Y, and ε was 
an n-by-1 error vector whose elements were statistically indepen-
dent and identically distributed (i.i.d.) normally random variates. 
The spatial covariance matrix for equation (2.1), using the sampled 
time series, socioeconomic, stratified, diagnostic, frequency covari-
ates was E [(Y - μl)’ (Y - μl)] = Σ = [(I - ρ W’)(I - ρ W)]-1σ2, where E 
(●) denoted the calculus of expectations, I was the n-by-n identity 
matrix denoting the matrix transpose operation, and σ2 was the er-
ror variance.

   However, when a mixture of positive and negative spatial au-
tocorrelation was present in model, a more explicit representation 
of both effects leads to a more accurate interpretation of empirical 
results [Griffith [1]]. Alternately, the excluded values may be set to 
zero, although if this is done then the mean and variance must be 
adjusted. In this research, two different spatial autoregressive, tem-
poral parameters appeared in the spatial, covariance matrix,  fre-
quency, homeless model specification, which in the SAR framework 
became expressable as:

[( ')( )]diag diagI W I Wρ ρ σ−= − < > − < >∑ 1 2

 (2.2a) 
where the diagonal matrix of autoregressive parameters, <ρ >diag, 
contained two sampled parameters:  ρ+  for delineating socioeco-
nomic, covariate pairs in geographic space displaying positive spa-
tial dependency, and ρ. for those pairs displaying negative spatial 
dependency. For example, by letting σ2 = 1 and employing a 2-by-2 
regular square tessellation,
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, enabled positing a positive relationship be-

tween the sampled homeless frequency covariates, y1 and y2, a neg-
ative relationship between covariates, y3 and y4, and no relationship 
between covariates y1 and y3 and between y2 and y4. This covariance 
specification yielded:

( )diag diagY I I Iµ ρ ρ+ + − −= − < > − < > 1

  
 (2.3a)
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where  I+  was a binary 0-1 indicator variable which denoted 
those  socio, economic covariates displaying positive spatial de-
pendency, and I- was a binary 0-1 indicator variable denoting those 
sampled covariates displaying negative spatial dependency, us-
ing I+ + I- = 1. Expressing the preceding 2-by-2 example in terms of 
equation (2.3) yielded:
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If either  ρ+  = 0 (and hence  I+  =  0  and  I-  =  I) or  ρ-  = 0 (and 
hence I- = 0 and I+ = I), then equation (2.3) reduces to equation (2.1) 
[Griffth [1]]. This indicator variables classification was made in ac-
cordance with the quadrants of the corresponding Moran scatter-
plot generated using the homeless, socioeconomic stratified, time 
series, frequency covariates sampled in the Tamapa-Hillsborough 
County study site.

If positive and negative spatial autocorrelation processes 
counterbalance each other in a mixture, the sum of the two spa-
tial autocorrelation parameters--(ρ+ + ρ.) will be close to 0 [Griffith 
[1]]. In this research, the Jacobian estimation was implemented 
by utilizing the differenced indicator  temporally dependent, so-
cioeconomic, sampled prognosticative variables (I+ - γ I-), for esti-
mating ρ+ and γ with maximum likelihood techniques, and setting 

ˆ ˆˆρ γρ− = − + . The Jacobian generalizes the gradient of a scalar 
valued function of multiple variables which itself generalizes the 
derivative of a scalar-valued function of a scalar [Cressie 1993]. A 
more complex specification was then posited by generalizing these 
binary indicator variables. We employed  F:  Rn →  Rm as a function 
from Euclidean n-space to Euclidean m-space which was rendered 
employing the Euclidean distance measurements between sam-
pled socioeconomic covariates. Such a function was given by m co-
variate (i.e., component functions), y1(x1, xn), ym(x1, xn). The partial 
derivatives of all these functions were organized in an m-by-n ma-
trix, the Jacobian matrix J of F, which was as follows:

This matrix was denoted by JF (x1,..., xn) and 
( , ..., )
( , ..., )

m

n

y y
x x

∂
∂

1

1
. The i th 

row (i = 1,..., m) of this matrix was the gradient of the ith component 
function yi:(∇ yi). In this analyses p was a sampled socioeconomic, 
frequency sampled covariate in Rn and F (i.e., domestic violence in 

pregnant women count) was differentiable at p; its derivative was 
given by  JF(p). The model described by  JF(p)) was the best linear 
approximation of F near the georeferenced county capture point p, 
in the sense that.

( ) ( ) ( )( _ ( )FF X F p J p X p o X p= + − + −   (2.4).

The spatial structuring of the homeless frequency model was 
achieved by constructing a linear combination of a subset of the 
eigenvectors rendered from a modified geographic weights matrix 
employing (I  - 11’/n) C (I  - 11’/n) that appeared in the numera-
tor of the MC. Spatial autocorrelation can be indexed with a MC, a 
product moment correlation coefficient [Griffith [1]]. A subset of 
orthogonal synthetic eigenvectors was then selected with a step-
wise regression procedure. Because (I - 11’/n) C (I - 11’/n) = E Λ 
E’, where E is an n-by-n matrix of eigenvectors and Λ is an n-by-n di-
agonal matrix of the corresponding eigenvalues, the resulting fre-
quency, homeless, time series model specification was given by: 

kY Eµ β ε= + +1  (2.5) where μ  the scalar mean of Y, Ek was 
an n-by-k matrix containing the subset of k <<n eigenvectors select-
ed with a stepwise regression technique, and β was a k-by-1 vector 
of regression coefficients.

 A number of the eigenvectors were extracted from 
(I  -  11’/n)  C  (I  -  11’/n), which were affiliated with geographic 
patterns of the  temporally dependent socioeconomic, frequency 
covariates, sampled in the Tampa-Hillsborough County study site, 
portraying a negligible degree of spatial autocorrelation. Conse-
quently, only k of the n eigenvectors was of interest for generating a 
candidate set for a stepwise regression procedure. Candidate eigen-
vector represents a level of spatial autocorrelation which can ac-
count for the redundant information in map patterns [Griffith [1]].

The preceding eigenvector properties resulted in  û = ŷ  and 

  for equation (2.3). Expressing equation (2.3) in terms of 
the preceding 2-by-2 example yielded
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Of note is that because the 2-by-2 square tessellation rendered 
a repeated eigen value. To identify spatially stratified georeference-
able, geospatial, homeless clusters, Thiessen polygon surface parti-
tioning were generated in ArcGIS to construct geographic neighbor 
matrices, which also were used in the spatial autocorrelation anal-
ysis. Entries in matrix were 1, if two sampled, georeferenced, socio-
economic covariates shared a common Thiessen polygon boundary 
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and 0, otherwise. Next, the linkage structure for each surface was 
edited to remove unlikely geographic neighbors to identify pairs of 
sampled, homeless, time series, dependent, parameter estimators 
sharing a common Thiessen polygon boundary. Attention was re-
stricted to those map patterns associated with at least a minimum 
level of spatial autocorrelation, which, for implementation purpos-
es, was defined by |MCj/MCmax| > 0.25, where MCj denoted the  jth 
value and MCmax, the maximum value of MC. This threshold value 
allowed two candidate sets of eigenvectors to be considered for 
substantial positive and substantial negative spatial autocorrela-
tion respectively. These statistics indicated that the detected neg-
ative spatial autocorrelated, socioeconomic stratified, homeless, 
frequency clusters may be considered to be statistically significant, 
based upon a randomization perspective. Of note, is that the ratio of 
the predicted error sum of squares (PRESS) statistic to the sum of 
squared errors from the MC scatterplot trend line was 1.29 which 
was well within two standard deviations of the average standard 
prediction error value (roughly 1.12) for a sampled,  explanatory, 
socioeconomic, stratified, frequency covariate in the Tampa-Hills-
borough study site. Because count data was being analyzed, a Pois-
son spatial filter model specification was employed in this research 
Detected overdispersion (i.e., extra-Poisson variation) results in its 
mean being specified as gamma distributed.The model specifica-
tion was written as follows: where μi was the expected mean count 
for a georeferenced zip code geolocation i, μ was an n-by-1 vector 
of expected socioeconomic estimator counts, LN denoted the natu-
ral logarithm (i.e., the GLM link function), α was an intercept term, 
and η was the negative binomial dispersion parameter. This log-lin-
ear equation had no error term; rather, estimation was executed 
assuming a negative binomial random variable.

The upper and lower bounds for a spatial matrix generat-
ed using Morans indices (I) was hence given by  λmax(n/1TW1) 
and λmin(n/1TW1) where λmax and λmin which were the extreme ei-
genvalues of Ω =  HWH. Furthermore, the eigenvectors of Ω were 
vectors with unit norm maximizing Moran’s  I in the frequency, 
forecast, county homeless, risk model. The eigenvalues of this ma-
trix were equal to Moran’s I coefficients of spatial autocorrelation 
post-multiplied by a constant. Eigenvectors associated with high 
positive (or negative) eigenvalues have high positive (or negative) 
autocorrelation Griffith [1]. In this investigation orthogonal fre-
quency eigenvectors associated with eigenvalues with extremely 
small absolute values corresponded to low spatial autocorrelation 
which were not suitable for defining spatial structures in the sam-
pled, socioeconomic, homeless, stratified covariates.

The diagonalization of the spatial weighting matrix generat-
ed from the homeless sampled  , zip code, indexed, frequency, so-
cioeconomic stratified, covariate coefficients consisted of finding 
the normalized vectors  ui, stored as columns in the matrix  U  = 

[u1 ⋯  un], satisfying the expression 
n

T T
i i i

i
HWH U U u uλ

=

Ω = = ∧ =∑
1

where Λ= diag (λ1 ⋯ λ n), 
T
i i iu u u= =

2 1  and 
T
i ju u = 0  for i ≠ j. 

Note that double centering of Ω implied that the orthogonal eigen-
vectors ui generated from the sampled    socioeconomic  stratified 
covariates were centered and at least one eigenvalue was equal to 
zero. Introducing these eigenvectors in the original formulation of 
Moran’s I led to:

( )

n
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Considering the centered vector z = Hx and employing the prop-
erties of idempotence of H, equation (2.6) was equivalent to:
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1 1
21 1 1 1  (2.7) As the eigenvec-

tors ui and the vector z were centered, equation (2.7) was rewritten:

 
(2.8)

In this research,  r  was the number of null eigenvalues of Ω 
(r  ≥ 1). These eigenvalues and corresponding eigenvectors were 
removed from Λ and U respectively. Equation 2.8 was then strict-

ly equivalent to: ( ) ( ) ( , )
n

i iT
i

nI X I u cor u z
W

γ−

=

= ∑ 2

11 1  (2.9).Moreover, it 
was demonstrated that Moran’s index for a given eigen vector ui 
was equal to I(ui)=(n/1T W1)λ i so the equation was rewritten: 

( ) ( ) ( , )
n
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i

nI X I u cor u z
W

γ−

=

= ∑ 2

11 1 The term cor2 (ui, z) represented the 
part of the variance of z that was explained by ui in the homeless 

county model z = β  i ui+ ei. This quantity was equal to 
. By definition, the eigenvectors ui were orthogonal, and therefore, 
regression coefficients of the linear models z = β i ui+ ei were those 
of the multiple regression model z = Uβ + ε = β iui + ⋯ + β n-r un-r + ε.

The maximum value of  I  was obtained by all of the variation 
of z, as explained by the eigenvector u1, which corresponded to the 
highest eigenvalue λ1 in the spatial autocorrelation error matrix. In 
this research, cor2 (ui, z) = 1 (and cor2 (ui, z) = 0 for  i ≠ 1) and the 
maximum value of  I, was deduced for Equation (2.9), which was 
equal to  Imax  =  λ1(n/1TW1). The minimum value of  I  in the error 
matrix was obtained as all the variation of z was explained by the 
eigenvector un-r corresponding to the lowest eigenvalue λn-r gener-
ated in the  homeless frequency model. This minimum value was 
equal to  Imin = λn-r (n/1TW1). If the sampled socioeconomic strati-
fied predictor variable was not spatialized, the part of the variance 
explained by each eigenvector was equal, on average, to cor2 (ui, z) 
= 1/n-1. Because the socioeconomic variables in  z  were random-
ly permuted, it was assumed that we would obtain this result. In 
this research the set of  n! random permutations, revealed that 

( ) ( )
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Results
We conducted a vigorous spatial autocorrelation vulnerability 

analyses in ArcGIS employing multiple dereferenceable, socioeco-
nomic stratified homeless, county observational, explanatory pre-
dictors. The Spatial Autocorrelation tool returned five values: the 
Moran’s I Index, Expected Index, Variance, z-score, and p-value in 
ArcGIS. These values were written as  messages  at the bottom of 
the geoprocessing pane during tool execution and passed as a de-
rived output values for potential use in models or scripts. We ac-
cessed the data  by hovering over the progress bar, clicking on the 
pop-out button, in the Geoprocessing pane. We evaluated all the au-
tocorrelation data which was accessed as an HTML report file with 
a graphical summary of results. The path to the report was includ-
ed with the messages summarizing the tool execution parameters. 
Clicking on that path opened the report file. Moran’s, I evaluated 
whether the county homelessness patterns expressed was clus-
tered, dispersed, or random based on the stratified socioeconomic 
predictors. When the Z score indicates statistical significance, a Mo-
ran’s I value near +1.0 indicates clustering while a value near – 1.0 
indicates dispersion (www.esri.com). The Global Moran’s I function 

also calculated a Z score value that indicated whether or not we 
could reject the null hypothesis. In this case, the null hypothesis 
stated “there is no spatial clustering in the homeless sampled so-
cioeconomic data of Tampa-Hillsborough County. In this tool, the 
Z Score was based on randomization null hypothesis computation. 
A Z-score is a numerical measurement used in statistics of a value›s 
relationship to the mean (average) of a group of values, measured 
in terms of standard deviations from the mean. If a Z-score is 0, it 
indicated that the homeless related data point’s score was identical 
to the mean score. To determine if the Z score is statistically signifi-
cant, we compared it to the range of homeless county sampled val-
ues for a particular confidence level. For example, at a significance 
level of 0.05, a Z score would have to be less than – 1.96 or greater 
than 1.96 to be statistically significant in the Hillsborough county 
model. The Moran’s I value, and associated Z score were written to 
the Command window and passed as derived outputs. The input 
field we selected only contained positive numeric values. Negative 
weights were converted to zero for the calculations. Thereafter 
multiple spatial autocorrelation cluster maps were generated (Fig-
ure 2, Figure 3, Figure 4, Figure 4A,4B).

Figure 2A: Final Autocorrelation Homeless Rick Map.
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Figure 2B: Ground Trothing highly positive autocorrelated homeless geo referenced cluster.

Figure 3: Conducting interview with a mentally challenged homeless person in a negative autocorrelation cluster during field verification of the 
socioeconomic cluster model.

Figure 4: Living quarters of a homeless person found a slightly positive autocorrelation cluster.
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Figure 4A: Homeless women in a negative autocorrelation cluster.

Figure 4B: A homeless mau in a downtown Tampa positively auto correlated cluster.

Figure 5: Density of OLS and weighted estimator.

Discussion
We generated multiple spatial auto correlation indexed, home-

less stratified frequency clusters for Tampa-Hillsborough County 
using on-line census and socio-demographic explanatory variables. 
The analyses computed the mean and variance for the homeless at-
tributes being evaluated. Then, for each feature value, the analyses 

subtracted the mean, creating a deviation from the mean. Deviation 
values for all neighboring features (i.e., attribute features within the 
specified distance band, for example) were multiplied together to 
create a cross-product. We noted that the numerator for the Global 
Moran’s I statistic includes these summed cross-products. Moran’s 
I statistic then quantitated the propensities for homeless popual-
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tions to cluster in specific georeferenced socio-economic zones of 
the county.

We quantitated some degree of spatial autocorrelation amongst 
the spatially distributed, univariate, homeless, frequency socioeco-
nomic observations. This autocorrelation we assumed originated 
from (a) missing exogenous factors that exhibited distinctive spatial 
patterns in homeless socioeconomic time series datasets and thus 
geographically tied the residuals together, or (b) underlying spatial 
processes that emerged from spatial exchange mechanisms among 
the regressors; and/or, (c) an inappropriate spatial aggregation of 
the underlying observational units. The presence of spatial auto-
correlation violates the ordinarily stated assumption of stochastic 
independence among socioeconomic stratified observations, on 
which statistical inference from most classical statistical frequen-
cy models is based in the literature. Thus, ignoring spatial auto-
correlation in these paradigms can lead to biased standard errors 
and/or biased parameter estimates, as well as artificially inflated 
degrees of freedom. This would result in skewed data outputs due 
to   spatial heteroskedasctcity.

Common practice, when dealing with spatially distributed ob-
servations, is to use either maximum likelihood or Bayesian esti-
mation. In this study, we investigated the necessary condition for 
consistency of the maximum likelihood estimator (MLE) of a spa-
tial homeless, socioeconomic stratified, frequency model with a 
spatial moving average process in the disturbance term. We show 
that the MLE of an eigen decomposed dataset of frequency-orient-
ed, spatially autoregressive, socioeconomic stratified, homeless 
parameters are generally inconsistent when heteroskedasticity is 
not considered in the estimation. We also show that the MLE of so-
cioeconomic dependent parameters of exogenous, homeless, time 
series, frequency sampled variables is inconsistent and determine 
its asymptotic bias. Asymptotically unbiased estimators are oper-
ators whose bias goes to 0 as the explanators (e.g., time series fre-
quency stratified sample size of socioeconomic homeless variables 

in regression space goes to infinity. According to Jacob if  ˆ
nθ  is an 

autocorrelated estimator of θ  using a sample of size n, then this 

estimator is asymptotically unbiased if 

We provide simulation results to evaluate the performance of 
the MLE. The simulation results indicated that the MLE imposed 
a substantial amount of bias on both autoregressive and moving 
average temporally dependent, homeless, stratified, socioeconomic 
parameter estimators in the forecast model. These parametric esti-
mators explicitly specified the distributional characteristics of the 
underlying models. In contrast, nonparametric methods are distri-
bution free without sacrificing too much information in a sample. 
However, these models may become quite computer intensive. See 
Hollander and Wolfe for more details on nonparametric statistical 
methods.  More specifically in the spatial domain, the nonparamet-
ric eigenvector filtering procedure does not require restrictive and 
perhaps unjustified distributional assumptions when constructing 

predictive, vulnerability-oriented, socioeconomic stratified, home-
less frequency, county-level, cluster models. 

The eigenvector spatial filtering procedure is founded on the 
standard ordinary least squares (OLS) estimator and is, apart from 
the assumptions of independence and constant variance of the dis-
turbances, distribution free owing to the Gauss Markov theorem 
(see Appendix 1). The spatial filtering estimator is fairly robust to 
model specification errors for optimizing homeless frequency pre-
dictive risk modelling county sampled, temporal socioeconomic 
stratified variables compared with a spatial MLE. The interpreta-
tion of its results is straightforward as the different components of 
a spatial process can be extracted and visualized. If a homeless data 
analyst or   epidemiologist needs to preserve some structural prop-
erties of spatial models, then spatial filtering can be implemented 
as a semiparametric method.

In this paper we concentrated on standard linear regression 
models y=Xb+e, where y is an (n>1) vector of the endogenous vari-
able for the n georeferenced socioeconomic observations, X is an 
(n=k) matrix of k exogenous variables, including an (n>1) unity 
vector 1, bis the (k>1) vector of regression parameters, and is an 
vector of random disturbances. We assumed that spatial autocor-
relation among regression disturbances was induced by exogenous 
spatially autocorrelated socioeconomic co-factors, which were not 
incorporated into the homeless, frequency, county model. This led 
to a model misspecification by shifting parts of the relevant infor-
mation from the mean response X (or first-order component) into 
an (nxn) covariance structure of the disturbances [or second-order 
component cov.].

Alternatively, we may allow an underlying spatial process in a 
homeless frequency, time series, epidemiological, diagnostic model 
which may be induced by spatial autocorrelation. Furthermore, an 
observed spatial pattern in the response variable  in such a para-
digm may be decomposable into, preferably three, statistically in-
dependent components: (a) a systematic spatial trend component 
that is specified by a parsimonious set of exogenous variables with 
a substantive meaning for the problem under investigation; (b) a 
stochastic signal that reflects either an underlying spatial process 
and/or a set of missing exogenous factors with an inherent spatial 
pattern; and (c) the independent white-noise disturbances. In dis-
crete time, white noise in a homeless forecast, vulnerability, county 
model is a  discrete signal  whose  samples (i.e., socioeconomic re-
gressors)  are regarded as a sequence of serially uncorrelated ran-
dom variables with zero mean and finite variance . Depending on 
the context, an epidemiologist or researcher  may also require 
that the samples  be  independent  and have identical  probabil-
ity distribution  (in other words  independent and identically dis-
tributed random socioeconomic variables  would be the simplest 
representation of white noise) in a homeless model  In particular, 
if each sample has a normal distribution with zero mean, the signal 
would be classified as additive white Gaussian noise.
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Hence, a  random homeless vector  (that is, a partially 
indeterminate process that produces vectors of real discrete 
integer values) is said to be a white noise vector or white random 
vector if its components each have a probability distribution with 
zero mean and finite  variance, and are  statistically independent: 
that is, their  joint probability distribution must be the product of 
the distributions of the individual components. A necessary (but, in 
general, not sufficient) condition for statistical independence 
of two variables is that they be  statistically uncorrelated; that is, 
their covariance is zero. Therefore, the covariance matrix R of the 
components of a white noise vector w with n elements  in a time 
conscious, homeless forecast, epidemiological model must be 
an n by n diagonal matrix, where each diagonal element Rᵢᵢ would 
be the variance of component wᵢ; and the correlation matrix would 
be be the n by n  identity matrix. If, in addition to being indepen-
dent, every sampled homeless stratified socioeconomic explana-
tory variable in w also has a normal distribution with zero mean 
and the same variance {\displaystyle \sigma ^{2}}, w would be  be 
a Gaussian white noise vector. In such cases the joint distribution 
of w in  the paradigm would be  a multivariate normal distribution; 
the independence between the variables would imply that the dis-
tribution has  spherical symmetry  in  n-dimensional space. There-
fore, any  orthogonal transformation  of the vector will result in a 
Gaussian white random vector in the model outcome. 

Often the weaker condition “statistically uncorrelated” is used 
in the definition of white noise, instead of “statistically indepen-
dent”. However, some of the commonly expected properties of white 
noise may not hold for this weaker version in a homeless predictive 
county risk model. Under this assumption, the stricter version can 
be referred to explicitly as independent white noise vector. Other 
authors use strongly white and weakly white instead. An example of 
a random vector that is “Gaussian white noise” in the weak but not 
in the strong sense is x=[x₁,x₂] where x₁ is a normal random variable 
with zero mean, and x₂ is equal to +x₁ or to −x₁, with equal probabil-
ity. These two variables are uncorrelated and individually normally 
distributed, but they are not jointly normally distributed and are 
not independent. If x is rotated by 45 degrees, in a homeless model 
its two components will still be uncorrelated, but their distribution 
will no longer be normal. In some situations an experimenter may 
relax the definition by allowin geach component of a white random 
vector w  to have non-zero expected value in the epidemiological, 
prognosticative, county, homeless model. {\displaystyle \mu }The 
underlying rationale for the eigenvector spatial filtering approach 
for homeless, predictive, risk modelling socioeconomic explanatory 
sampled variables is eigenvectors that are extracted from a trans-
formed spatial link matrix exhibit distinctive spatial patterns with 
associated spatial autocorrelation levels. Furthermore, these eigen-
vectors are mutually orthogonal and uncorrelated. A linear combi-
nation of a small subset of these eigenvectors are capable of: (a) 
capturing the hidden spatial pattern of a stochastic component in 
a homeless county frequency model, and (b) filtering this pattern 

from the covariance matrix of the sampled socioeconomic, strati-
fied, frequency, time series, georeferenced observations. Thus, this 
subset of eigenvectors is a proxy either for those spatially autocor-
related exogenous socioeconomic co- factors that have not been 
incorporated into a homeless, temporally dependent, frequency 
model, or for an underlying spatial process that ties the sampled 
observations together in geographic space. Furthermore, incorpo-
ration of all relevant eigenvectors into a homeless frequency socio-
economic stratified time series model would leave the remaining 
residual component spatially uncorrelated. Consequently, standard 
statistical modeling and estimation techniques as well as interpre-
tations can be optimally employable for constructing county-level, 
spatially filtered homeless, predictive risk models.

The key theoretical and practical issues of the eigenvector fil-
tering approach for time series homeless forecast vulnerability, 
cluster modelling is: (a) which eigenvectors constitute the poten-
tial candidates for specific regression models, and (b) which selec-
tion strategy leads to spatially uncorrelated regression residuals 
and a parsimonious set of eigenvectors. Here we proposed alter-
native collections of eigenvectors that allowed us to perform semi-
parametric spatial filtering on an empirical dataset of time series 
sampled dereferenceable, socioeconomic stratified variables in 
geographic space.  We investigated more closely different selection 
strategies that can be employed to derive the most parsimonious 
subset of eigenvectors. Initially we reviewed parametric as well as 
nonparametric spatial filtering methods for optimally quantitating 
the temporal sampled, georeferenced, homeless frequency, socio-
economic, stratified, parameter estimators. Next, several spatial 
autoregressive regression zip code models were constructed. We 
then spatially linked the semiparametric spatial filtering methods 
and the autoregressive spatial regression models. Finally, stepwise 
selection strategies for the set of relevant eigenvectors, rendered 
from the eigenfunction eigen decomposition orthogonal frame-
work was conducted employing their underlying geographic algo-
rithms which allowed cartographically delineating the positive and 
negative autocorrelated stratified georeferenced clusters. 

Thereafter we conducted video interviews to determine 
causation in positive and negative autocorrelated clusters. Vio-
lence, especially for female victims was common in the positive au-
tocorrelated cluster. Mental health was the primary covariate in the 
negatively autocorrelated cluster. In the positively autocorrelated 
georeferenced cluster drug usage and transaction was a primary 
covariate. The top causes of homelessness among unaccompanied 
individuals in highly positive autocorrelation were (1) unemploy-
ment, and 2) drug usage/ transaction. In slightly positive autocor-
related cluster causation was identified as 1) previous incarcer-
ation, 2) medical care/ food shortage and 3) domestic violence 
especially for female victims. Mental Health was the primary co-
variate in the negatively autocorrelated clusters. 

Credible estimates of the prevalence of alcohol and drug abuse 
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suggest that alcohol abuse affects 30% to 40% and drug abuse 10% 
to 15% of homeless persons. A review of policies that address sub-
stance abuse among the homeless in Tampa-Hillsborough County 
may reveal interventions alternate between control and rehabilita-
tion. However, the unique needs of a changing homeless population 
in the county may require an integration of alcoholism and drug 
abuse recovery services with programs for women, adolescents, 
and the mentally ill. Alcohol- and drug-free housing may be essen-
tial to support and maintain recovery in Tampa-Hillsborough Coun-
ty. Unemployment  led the list of causes of  homelessness  among 
individuals, followed by lack of affordable housing and lack of need-
ed services, and substance abuse and lack of needed services. The 
increasing numbers of people leaving carceral institutions face an 
increased risk for homelessness in the county.

In the negatively autocorrelated clusters, mental illness was 
determined to be a predominant factor. Since these individuals 
tended to be socially isolated, they were no evidence of people 
spatially clustering in Tampa-Hillsborough County. People who are 
homeless may be vulnerable to myriad health and social problems, 
which may be exacerbated by the presence of mental illness. People 
with severe mental illness may become homeless as a direct result 
of the symptoms of their illness. As a consequence, these people 
may not utilize social and economic networks, or both in the coun-
ty.  The experience of homelessness may precipitate and exacerbate 
symptoms of mental illness, whether alone or in the context of sub-
stance misuse. The prevalence of serious mental illness is higher in 
homeless people compared with those who are housed, and there 
are higher rates of personality disorder, self-harm and attempted 
suicide.

Homelessness disproportionately affects women and children 
in Tampa-Hillsborough County. Homeless women are at higher risk 
of having chronic illnesses, infectious diseases, substance abuse 
problems, mental  illness, and being a victim of sexual or domes-
tic violence more than women who are not homeless (National 
Coalition for the Homeless [3]). They are also less likely to have 
insurance, social support, income, or access to preventive health 
services. Persons who experience homelessness may be less likely 
to engage in the health care system due to challenging relationships 
with health  care providers, inconvenience, cost, and a perceived 
lack of compassion and discrimination on the part of the providers. 
Senior members of the health care team are particularly responsi-
ble for educating house staff and students on how to appropriately 
care for this vulnerable group of women.

During our field verification exercises of our homeless pre-
dictive risk mapping variables, we noted that pregnant homeless 
women were typically younger than non-pregnant homeless wom-
en. During the interview process we noted that these victims had 
a history of family disruption. We were able to surmise that the 
homeless pregnant teenagers in Tampa-Hillsborough County are 
commonly the product of domestic instability and/or poverty. In a 

survey of women at emergency departments and primary care clin-
ics, pregnant women who were homeless had higher rates of ciga-
rette smoking, lower rates of employment, and lower achieved edu-
cational levels as compared with consistently housed counterparts 
Crawford [4]. In a study that reviewed trends of homeless women 
in the United States from 2000 to 2007, homelessness was associ-
ated with Black and Hispanic races, being unmarried, uninsured, 
and receiving government aid. The prevalence of homelessness 
among women in this study was 4 percent, which is approximately 
1 in every 26 women of reproductive age in the United States. The 
explanatory frameworks for women’s homelessness and its gen-
dered nature, require more invasive research in order to identify 
major trends in Tampa-Hillsborough County which may have to be 
addressed differently rather than men homelessness. Research on 
women’s homelessness in the county may provide an interesting 
and particularly useful approach to the ‘construction of homeless-
ness’, its practices, socially perceived images and discourses, while 
offering important insights on policies and practices. Perceptions 
of homeless women may increase understanding of the complex 
interactions between power structures and individual agencies in 
Tampa- Hillsborough County.

We were able to determine other co-factors associated with 
homelessness in Hillsborough County. For example, we were able 
to determine that in the county there was a tendency for people 
to lose jobs and then housing. Homeless women ran away to the 
street to escape domestic violence. Many people in the county ex-
perienced significant trauma and simply could not cope with life. 
Others struggles with mental illness, depression, or post-traumatic 
stress of affordable housing in homeless. Once homeless, the lack of 
housing, access to healthcare, and supportive services, then seem 
to act as other barriers that keep individuals from moving back into 
housing.

Concerns with automatic variable selection procedures are well 
known Chatfield [5] and generally applied in this research effort. Of 
particular concern is that all candidate eigenvectors coefficients in 
the homeless frequency analyses had nonzero prior probability for 
inclusion in the final model but all that failed to meet the threshold 
for inclusion which was then given by the quantized coefficients of 
βEi = var(βEi) = 0 which self-evidently eliminated some amount 
of uncertainty that remained after regressing the socioeconomic 
data. A proper accounting for uncertainty in the spatial process is 
important not just in its own right, for the purposes of prediction 
and possibly cluster detection, but also is necessary for an accurate 
estimation of the marginal effects of covariates of interest in county 
homeless frequency model constructed employing empirical so-
cioeconomic stratified dataset of time series, sampled covariates. 
A primary challenge for ESF estimation is the proper calculation 
of uncertainty across the high-dimensional parameter space. Jacob 
explicitly states that within the frequentist paradigm the variance 
of a multiple regression coefficient estimates βj var (ˆ βj) = σ2 ∑n 
i=1(Xji − ¯ Xj)2(1 1−R2 j) (3) where σ2 is the residual variance and R2 
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j is the R2 statistic from a regression of xj on the remaining covari-
ates in the design matrix X. Hence the precision of βj increases with 
the variance of xj and decreases with σ2 and R2 j. If µ =Xβx with βx 
a vector of unknown coefficients in a homeless, georeferenced fre-
quency-oriented socioeconomic stratified geospatial cluster, then 
any non-zero pairwise correlation between sampled covariates and 
their eigenvectors necessarily may induce additional uncertainty 
into the estimate of βx in the model renderings. At the same time as 
variable selection procedures drop, some homeless frequency, es-
timator eigenvectors with non-zero correlations derived from the 
model, may require unpenalized additions. Here these eigenvectors 
correlated with the outcome variable but decreased the residual 
variance of the regression. Automatic variable selection procedures 
in the homeless model construction phase thus worked systemat-
ically to minimize the standard error of regression coefficients but 
without accounting for all sources of uncertainty. The challenge is 
obviously that a high-variance frequency, homeless, socioeconomic 
stratified county forecast, vulnerability-oriented, epidemiological 
model with a predetermined number of n estimated eigenvector 
coefficients may fail to meaningfully delineate the researchers state 
of knowledge since it ignores a great deal of prior information re-
garding the degree of complexity in most spatial processes and may 
over or under-correct for spatial autocorrelation.

In the future, spatial sampling autocorrelation cluster, fre-
quency homeless, socioeconomic stratified risk models may be 
employed to measure populations that are not straight forward in 
order to capture homeless groups in Tampa-Hillsborough County 
that are often underestimated. For example, because of varying 
definitions of homelessness and transient nature of the homeless 
populations autocorrelation methods may arrive at estimates of 
population counts by extrapolating parts of the populations that 
can be observed and measured. These paradigms can be used to 
either guide new data collection or estimate population size using 
existing survey homeless county socioeconomic stratified data.

Time series spatial epidemiological models may be geared to-
wards producing accurate forecasts in outcomes of interest (e.g., 
causation of geospatial clusters stratified by homelessness so-
cio-economic, explanatory, georeferenced variables) in the short 
to medium-term based on past trends in Hillsborough County.  In 
order to generate short-time forecasts, these models may depend 
heavily on the latest observations in the sample. On the other hand, 
when applied for medium term predictions, they can be adjusted to 
place more emphasis on longer term homeless trends in Hillsbor-
ough County. 

Forecasts of urban zones using socio-economic or demographic 
homeless-related explanatory, temporally dependent georeference-
able variables may be synthesized from the Autoregressive Inte-
grated Moving Average (ARIMA) model, the error-correction mod-
el, the Autoregressive Conditional Heteroscedastic (ARCH) model 

and a Box-Jenkins multi-variate time series analysis. The Arima ap-
proach may be the simplest method applied to forecast homeless-
ness, socioeconomic-related trends in Hillsborough County. It may 
be used to measure links between key predicting factors and future 
outcomes of homelessness. Branas employed ARIMA techniques to 
forecast suicide rates conditional on adverse economic conditions 
while Chamlin applied the Arima methodology to explore temporal 
relationships between crimes and arrest rates. The Box-Jenkins and 
Arch approaches, which can be thought of as extensions to the basic 
ARIMA method, mainly rely on the same principles. They may be 
also applied to forecasting other homeless, socioeconomic indexed 
explanatory outcomes such as income, inequality, and poverty. 
Moreover, the error correction model may arrive at prognostica-
tions of welfare outcomes considering their relationships with a set 
of homeless-related county sampled cluster covariates over time.

Machine learning methods have recently been used to produce 
projections of welfare outcomes, such as poverty. These methods 
may identify patterns of connections between explanatory so-
cio-economic co-factors and homeless outcomes in Tampa-Hill-
sborough County through iterative processes by prioritizing geo-
referenceable, temporally dictated cluster covariates related to 
homelessness. High-order interactions between predictive home-
less explanatory variables and outcomes of interest that do not 
need to be specified in advance may be explored. Machine learning 
methods may be subsequently employed to produce projections of 
welfare outcomes such as unemployment. Machine learning meth-
ods may also map links from predicting homeless georeferenced 
clusters in Tampa-Hillsborough County to outcomes of interest 
(geolocations for homeless drug usage intervention). These para-
digms may be effectively applied when the goal of the research is an 
accurate prediction of specific outcomes rather than the estimation 
of separate effects of single causal factors in the county [6-10].

With the ArcGIS platform, organizations can gain a high-level 
overview of all operations in real time, and in one place for mapping 
county homeless populations in Tampa-Hillsborough County. Oper-
ations Dashboard for ArcGIS is a ready-to-use application that can 
configure any outreach homeless–related socioeconomic program 
so that a researcher or epidemiologist can focus on what matters 
most. Interactive maps and data sources can be updated automati-
cally as field information changes so researchers can view a current 
homeless, frequency- stratified cluster location for outreach teams 
where surveys could be administered. Furthermore, the dashboard 
may determine what types of issues are becoming apparent, and 
where data is missing. Shelter staff can access real-time data to 
know how many people they are serving, while administrators can 
obtain a current view of shelter capacity across a given region of 
Tampa-Hillsborough County. Giving executives visualizations of 
homeless frequency county trends may allow them to be better 
prepared for public inquiries and budget appropriately.     
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In future research, the spatial autocorrelation county cluster 
models should include time of early substance exposure, self-es-
teem, and other psycho-social variables. Such analysis may illu-
minate heterogeneity in homeless, time series stratified, socio-
economic data at the county level. Other frequency variables that 
should be employed when risk modelling homelessness in Hillsbor-
ough County may include neighborhood acceptance and systemic 
stigma/discrimination which may have substantial influence on 
housing outcomes.

Strengths of an ArcGIS spatial autocorrelation analysis include 
usage of data from a large heterogeneous multisite, zip code, coun-
ty sample with low attrition and comprehensive measurement. 
Despite these strengths, we caution that “trajectory analyses rep-
resent statistical approximations rather than identifiable ‘types. 
Causal inferences are tentative. Our spatial modelling approach 
is aimed at finding longitudinal patterns in data, and the results 
which may not be entirely consistent with classical county-level 
homeless analyses. Even though we specified an autocorrelation 
model in advance, the analysis was very exploratory, and the class 
compositions should not be considered absolutely precise. Some 
socioeconomic sampled variables were not comprehensively as-
sessed. Unfortunately, self-reported homeless variables may be 
prone to numerous biases. Our suggestions for research for Hill-
sborough County include longer follow-up, vulnerability model-
ing variable groupings as higher-level dimensions, and examining 
other outcomes (e.g., recovery time frames). Further description of 
specific patterns of housing based on more refined socio-economic 
zones (lower residential urban within 2 km Euclidean distance of a 
georeferenced drug overdose death) is also warranted.

Correlations between eigenvectors of a spatial connectivity 
matrix and covariates have been coined ‘spatial confounding’. In 
contrast to the perspective just outlined, Hodges and Reich argue 
that the variance inflation caused by correlations between spatial 
random effects and covariates does not reflect any legitimate in-
ferential uncertainty and can also ‘‘mess up’’ the fixed effects es-
timates obtained from a non-spatial linear model (e.g., homeless 
frequency, socioeconomic stratified, negative binomial regression 
with a non-homogenous gamma distributed mean). This view mo-
tivated to conduct a search for a model in which ‘‘sample size can be 
discounted without distorting the fixed effect estimate. To this end 
Hodges and Reich proposes Restricted Spatial Regression (RSR), a 
spatial filtering method which introduces the eigenvectors of Mo-
ran’s eigenvectors where M = I − X(X′X) −1X′, so that the eigenvec-
tors are restricted to the space orthogonal to X. 

Moran’s homeless, frequency, time series, indexed,  eigenvec-
tors maps are attractive mathematical objects as they are fairly 
simple to calculate and can be used in most studies of spatially-ex-
plicit socioeconomic, homeless  data. There is, however, an aspect 
of eigen-analysis that still requires some investigation for precision 
homeless risk, mapping: the effect of irregular cluster sampling on 

modeling performance. A study may be conducted to investigate 
empirically the behavior of varying time series stratified irregular-
ity schemes, Moran’s eigenvector maps generated from sampled, 
georeferenced frequency datasets of explanatory socioeconomic 
stratified, georeferenced, geospatial, cluster covariates may re-
veal aggregation propensities in the diagnostic estimators. By fo-
cusing on simulated scenarios in ArcGIS sampling designs may be 
usable to determine frequency-oriented   fluctuating and constant, 
causation, homeless parameters. Moran’s eigenvector homeless 
frequency county maps may be computed and correctly used with 
time series socioeconomic stratified data coming from irregular-
ly designed sampling surveys, given some precautions. Homeless 
georeferenced county sampling sites may be equally spaced but 
may not cover an entire county study area, however the Moran’s ei-
genvectors can be still computed directly based on the coordinates 
of the sampling sites without any important loss of information. 
Whereas, when the phenomenon of interest is resolved employing 
randomly stratified sampling designs, the homeless, frequency, so-
cioeconomic stratified, temporally sampled, Moran’s eigenvector 
frequency maps  should be computed on a reconstructed space of 
regular sampling sites followed by removal of the missing sites, be-
fore analysis. This solution of rebuilding a (regular) sampling space 
may capture the underlying process causing the clustering tenden-
cies in the sampled socioeconomic, georeferenced, county, frequen-
cy covariates hence improving the modeling results and relaxing 
the impact of the choice of the weighting matrix on the computation 
of Moran’s eigenvector maps.

RSR is designed such that no correlated eigenvectors are al-
lowed to ‘steal’ from the explanatory power that an OLS regression 
would apportion exclusively to the covariates. To the extent that 
correlations between georeferenced, sampled, frequency strati-
fied, socioeconomic, time series, vulnerability county covariates 
and their eigen decomposed eigenvectors produce a challenge for 
probable inference – particularly that of simultaneously estimating 
a nonstationary mean and the effects of covariates with limited in-
formation – surely it would be necessity to address this phenom-
enon in homeless time sensitive, socioeconomic, parameterized, 
estimator models. One reason to remain skeptical of RSR is its sub-
stitution of a deterministic separation procedure designed to purge 
a source of parameter uncertainty from the model, for established 
inferential methods. The notion that the spatial trend component of 
a frequency diagnostic, homeless, socioeconomic, stratified county 
model should have no impact on non-spatial parameter estimates 
overlooks the geographic analog to Yule’s ‘‘nonsense correlations’’ 
which routinely appear in nonstationary time series data and mo-
tivates much foundational work in spatial statistics. This suggests 
that the a priori restriction of the space spanned by the spatial filter 
is counterproductive in the sense that it ignores useful, potentially 
critical information. Lastly, Murakami and Griffith’s RE-ESF model, 
which was an extension of Hughes and Haran’s Bayesian estimation 
procedure, is a highly promising development for ESF since it pro-
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duces penalized estimates of βE with empirical Bayes techniques 
rather than resorting to variable selection methods. However, cal-
culating the degrees of freedom for REML, homeless, socioeconom-
ic stratified, cluster frequency, county temporal models may be a 
challenge. The restricted (or residual, or reduced) maximum likeli-
hood (REML) approach is a particular form of maximum likelihood 
estimation that does not base estimates on a maximum likelihood 
fit of all the information, but instead uses a likelihood function cal-
culated from a transformed set of data, so that nuisance parameters 
have no effect [11-13].

The success of homeless outreach programs depends on gov-
ernment agencies, nonprofits, and the community working togeth-
er in Tampa-Hillsborough County to accomplish the same mission. 
To determine how to best use internal and external resources, di-
rectors and executives at all levels need a sound understanding of 
how their programs are performing. Being able to understand oper-
ations in real time allows county organizations to stay accountable 
while delivering the right resources to the people who need them 
most-while getting the job done faster.

Conclusion        
In conclusion, our spatial autocorrelation frequency models 

suggest new supportive facilities and shelters for the homeless 
should be located in areas with a high availability of employment, 
inexpensive or free medical care and food in Tampa-Hillsborough 
County. Furthermore, free mobile drug addiction programs, and 
family domestic violence interventions should be implemented in 
the county. Homelessness prevention in the county must not only 
include interventions targeted at individuals, but broader structur-
al reforms directed at addressing the drivers of homelessness. With 
intelligent mapping and survey tools, Tampa-Hillsborough County 
homeless-related agencies can do more with field collected and 
socio-demographic/socioeconomic data. Geographic Information 
System (GIS) technology and autocorrelation statistics can deliver 
the power of geography and analysis to help human service orga-
nizations in the county collect, manage, visualize, and understand 
this data in new ways. Even without a physical address, the location 
of homeless individuals has a key role in identifying patterns and 
trends in Tampa-Hillsborough County. Then, communities in the 
county can truly understand homelessness, see where the need is 
greatest, and determine the best approach for connecting people 
with critical resources Figure 5. 

Conclusion derivable from the Gauss-Markov Theorem

•	 Both estimators seem to be unbiased: the means of their esti-
mated distributions are zero.

•	 The estimator using weights that deviate from those implied 
by OLS is less efficient than the OLS estimator: there is higher 
dispersion when weights are wi=1±0.8100wi=1±0.8100 inste
ad of wi=1100wi=1100 as required by the OLS solution

•	 A number of different approaches have been    proposed in the 
literature for modeling the unmeasured spatial  autocorrela-
tion, including geostatistical models  simultaneous autore-
gressive models (Kissling and Carl, 2008), and spline-based 
models. However, by far the most common approach is to use 
conditional autoregressive (CAR) models, which are a special 
case of a Gaussian Markov random field (GMRF). These models 
represent spatial closeness via an I × I neighborhood or adja-
cency matrix W, where element wir defines whether areas (i, r) 
are spatially close. Typically, a binary specification is used, so 
that wir = 1 if areas (i, r) are spatially close and wir = 0 other-
wise. This specification leads to a sparse specification for W, 
which makes the fitting of these models much more efficient 
than if  W  was a dense matrix. Commonly, border sharing is 
used to determine W, so that wir = 1 if areas (i, r) share a com-
mon border, and  wir  = 0 otherwise. Given this neighborhood 
matrix, CAR models for a vector of random effects  ϕ  are 
most often written as a set of  univariate  full conditional 
distributions,  f(ϕi|ϕ−i), where  ϕ−i  = (ϕ1, …,  ϕi−1,  ϕi+1, …,  ϕI). 
However, this set of  I  conditional distributions is equivalent 
to the following  multivariate  Gaussian joint distribution 
ϕ∼N(0,τ2Q(W)−1), where 0 is an I × 1 vector of zeros and Q(W) 
is an I × I, potentially singular, precision matrix. The simplest 
CAR model is the  intrinsic  model (ICAR,  Besag et al., 1991), 
which is given by ϕi|ϕ−i∼N∑r=1Iwirϕr∑r=1Iwir, τ2∑r=1Iwir, 
and corresponds to the singular precision matrix Q(W) = diag 
(W1) −W in the above joint specification. This model can cap-
ture spatial autocorrelation in a time series sampled, empirical 
sampled dataset of georeferencable, socioeconomic, stratified, 
homeless parameter estimators   because the conditional ex-
pectation would be the mean of the random effects in neigh-
boring areas, while the conditional variance would be  inverse-
ly proportional to the number of neighboring areas. This latter 
specification makes sense if the homeless data are spatially 
autocorrelated, because the more neighbors’ area  i  has with 
similar random effect values, then the more information and 
hence the less uncertainty there is about the value of ϕi. How-
ever, GMRF/CAR model corresponds to an improper joint dis-
tribution for ϕ with a singular precision matrix, and also only 
allows for strong spatial correlation that can sometimes lead 
to over smoothing. Therefore the  convolution  or  BYM  model 
was proposed by Besag .which augments the intrinsic model 
with a second set of spatially unstructured random effects.

(5)ϕi=ϕi(1)+ϕi(2),ϕi(1)|ϕ−i(1)∼N∑r=1Iwirϕr(1)∑r=1Iwir,τ2
∑r=1Iwir,ϕi(2)∼N(0,σ2).

This model represents the random effects ϕ with a convolution 
of spatially autocorrelated and spatially unstructured effects, 
which are modeled by the intrinsic CAR model and a zero-mean 
Gaussian shrinkage model, respectively. This is the most commonly 
used CAR model in the literature and can induce varying levels of 
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spatial autocorrelation by varying the amount of variation in each 
of the two components. Two alternative model frameworks have 
been proposed, which each have a single set of random effects but 
introduce a spatial dependence parameter ρ  to allow for varying 
levels of spatial autocorrelation. The first was proposed by Stern 
and Cressie and is given by (6) ϕi|ϕ−i∼Nρ∑r=1Iwirϕr∑r=1Iwir, 
τ2∑r=1Iwir, and corresponds to a joint distribution with pre-
cision matrix Q (W, ρ) = diag(W1) − ρW. Here ρ = 1 simplifies to 
the intrinsic model while ρ = 0 corresponds to independence, the 
latter being the case as then the conditional expectation does not 
depend on the random effects in other areas. One downside of this 
model is that if ρ = 0 then the conditional variance still depends on 
the number of neighboring areas, even though there is no spatial 
autocorrelation in the random effects. Therefore an alternative 
was proposed by  Leroux which is given by(7) ϕi|ϕ−i∼Nρ ∑r=1I-
wirϕrρ∑r=1Iwir+1−ρ,τ2ρ∑r=1Iwir+1−ρ, and corresponds to a 
joint distribution with precision matrix Q(W, ρ) = ρ[diag (W1) −W] 
+ (1 − ρ)I, where I is an identity matrix. In this model ρ = 1 simpli-
fies to the intrinsic model, while ρ = 0 corresponds to independence 
with mean zero and a constant variance. More recently,  Riebler 
proposed an alternative CAR model to the above that accounts for 
scaling, and a number of other extensions are discussed in the re-
mainder of this chapter. Inference for this model is typically under-
taken in a Bayesian setting.

A summary of the inferential spatial autocorrelation approach-
es for predictive homeless modelling may be provided by lattice 
data, whereby values, (y1,  y2, …,  yn) of some socioeconomic strat-
ified, time series, explanatory variable  Y  are recorded for each 
member of a set of n areal units (a1, a2, …, an) which, taken collec-
tively can cover the study region  A, i.e.,  a1∪a2∪…∪an=A. The set 
of data values may subsequently be considered to represent one 
possible realization of a spatial process operating over  A. Lattice 
data are analyzed by examining characteristics of the association 
between pairs of data values as some function of their spatial asso-
ciation. (i.e., spatial autocorrelation).’ Since the data sites are home-
less aggregated areas, there are many different ways in which the 
spatial association  wij  between any sampled socioeconomic data 
sites aj may be modeled. By far the most frequently used method 
is to set wij=1 if ai, aj share a common boundary, and wij=0, if they 
do not. An observed value of I which is larger than its expectation 
under the assumption of spatial independence indicates positive 
spatial autocorrelation (i.e., similar values of  y, are found in spa-
tial juxtaposition). In contrast, negative spatial autocorrelation 
occurs when neighboring values of  yi  are mutually dissimilar, 
indicated by an observed value of Moran›s I which is smaller than 
its expectation. For data sets of n≥50, I is approximately normally 

distributed so that the standard score may be used to determine 
if the empirical pattern displays significant spatial autocorrelation. 
The measurement of spatial autocorrelation can be extended to 
higher-order spatial neighbors where the spatially associated areas 
are (k−1) intervening areas apart. A plot of the values of I for dif-
ferent spatial lags k, the spatial correlogram, is useful for detecting 
scale variations in the spatial pattern (Upton and Fingleton).
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