

ris Publishers

Research article

Copyright © All rights are reserved by Clement Boateng Ampadu

A Chen Type Generated Family of Distributions

Clement Boateng Ampadu^{1*}

¹Department of Biostatistics, 31 Carrolton Road, Boston MA 02132-6303, USA

***Corresponding author:** Clement Boateng Ampadu, Department of Biostatistics, Boston, USA.

Received Date: March 04, 2020 Published Date: March 19, 2020

Abstract

Inspired by [1] and [2] we introduce a new Chen type generated family of distributions and show a sub-model of this broad class of statistical distributions is a good fit to real-life data. Our hope is that readers will consider investigating some properties and applications of this new class of distributions.

Contents

The New Family Illustrated

We begin with the following

Definition 2.1.1: Let T be a random variable with PDF g(t) and CDF G(t), and let X be a random variable with CDF F(x), the new Chen generated family of distributions (" $C_T - X$ " for short) is defined by the following integral for its CDF

$$\int_0^{-\log(1-F(x))} \frac{\lambda\beta}{1-e^{-\lambda(1-e)}} g(t) G(t)^{\beta-1} e^{G(t)^\beta} e^{\lambda(1-e^{G(t)^\beta})} dt$$

Where $\lambda, \beta > 0$

(†)

From the above we have the following

Proposition 2.1.2: The *CDF* of $C_T - X$ is given by

$$\frac{1 - e^{\lambda(1 - e^{G(-\log(1 - F(x)))^{\beta}})}}{1 - e^{-\lambda(1 - e)}}$$

where the random variable T has CDF G, the random variable X has CDF F(x), and $\lambda, \beta > 0$, and $x \in Supp(F)$

For illustrative purposes, let us assume $T \sim Exponential(f)$, and $X \sim Normal(c,d)$, then from

the Proposition immediately above we have the following Theorem 2.1.3: The CDF of Chen Exponential-Normal is given by

$$\frac{1 - \exp\left(\lambda \left(1 - e^{\left(1 - \frac{1}{2} \operatorname{erfc}\left(\frac{c - x}{\sqrt{2}d}\right)\right)^{f}}\right)^{\beta}}\right)}{1 - e^{(1 - e)\lambda}}$$

where erfc(.) gives the complementary error function, $d, f, \lambda, \beta > 0$, and $x, c \in \mathbb{R}$.

Obviously, the *PDF* can be obtained upon differentiating the *CDF* above. We write $W \sim CEN(\lambda, \beta, c, d, f)$, if W is a Chen Exponential-Normal random variable. The Chen Exponential Normal distribution is a good fit to real life data as shown below [Figure 1].

Acknowledgement

None.

Conflict of Interest

No conflict of interest.

Annals of Biostatistics & Biometric Applications

Volume 4-Issue 1