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Introduction

The area of neurological disease research requires adequate 
statistical inferential methods appropriate for addressing unique 
aspects of neuroimaging data. In neural connectivity research, 
we detect disrupted connectivities for targeting treatment 
interventions for therapeutic benefit. A detailed understanding of 
how brains with neurological conditions (e.g. autism, depression, 
traumatic brain injury (TBI) etc.) differ from healthy brains is 
fundamental to the development of treatments for these conditions. 
Disrupted network connectivity between distant brain regions has 
been reported among individuals with ASD [1-5]. These reports 
showed both increased and decreased connectivities in brain 
regions including default mode network, social brain regions, 
attentional regions, visual search regions and corticostriatal 
connections. However, knowing the specificity of diagnosis criteria  

 
(American Psychiatric Association 2013), there is hope that some 
(possibly complex) patterns of brain features may be unique to the 
disorder and it is worth to continue the research.

The primary goal of psychiatric neuroimaging research is to 
identify objective biomarkers that may inform the diagnosis and 
treatment of brain-based disorders. Data-intensive machine learning 
methods are a promising tool for investigating the replicability of 
patterns of brain function across larger, more heterogeneous data 
sets Varoquaux and Thirion, (2014). Several studies have shown 
that data-intensive machine learning methods are a promising 
tool for identification of objective biomarkers. They have used a 
brain imaging data from a worldwide multi-site database known 
as ABIDE (Autism Brain Imaging Data Exchange), where data 
gathered across different scanners, with different field strengths 
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Abstract
Aberrant activities in the complex human brain network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s 

disease, Alzheimer’s disease and Autism Spectrum Disorder (ASD). Functional Magnetic Resonance Imaging (fMRI) has emerged as an important 
tool to delineate the neural networks affected by such diseases, particularly ASD. In seeking for earlier diagnosis, we aimed to find biomarkers 
through the analysis of resting state fMRI images. In this article, we present a holistic approach to detect disrupted connectivities in whole brain 
studies. Our meta analytic approach addresses multidimensional heterogeneities in the context of multiple ROIs borrowing strength from all sites. 
Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange (ABIDE), which includes 361 subjects from eight medical 
centers. Our results are consistent with previous studies in Autism research. These interrupted regions are involved in language processing, social 
cognition, auditory effect on social communication which are associated with ASD. We believe that our findings have addressed the variations due to 
different hierarchies and thus lead to more reliable identification of therapeutic targets for intervention. Our disciplined study can be used for early 
detection of subjects who are at a higher risk of developing neurological disorders. 
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and different acquisition schemes [5-7]. These studies revealed 
that acquisition site has significant effects on image properties. 
To alleviate the problem of between site variation, several studies 
[3,6,8,9] applied domain adaptation machine learning algorithms 
to classify ASDs from HCs using cross-site evaluation strategy.

In this article, we propose a meta analytic approach utilizing 
mixed-effects model to detect disrupted connectivities by 
controlling the false discovery rate (FDR) for better confidence in a 
group comparison study at the region of interest (ROI) level using 
data from multiple independent studies.

Functional connectivity of ROIs is generally measured by the 
Pearson correlation coefficient, and a disrupted connectivity is 
detected by a t-test in a group comparison study while comparing 
a link (connection between two ROIs) of a neurological condition 
group with the corresponding link of a healthy control group. 
However, when a large number of ROIs is involved in such studies, 
the problem becomes challenging as ROIs nested within the 
same brain are expected to be correlated, and an adjustment of 
the type I error rate becomes necessary in order to control the 
false discoveries. In our previous research, mixed-effects models 
have been used to address within-subject and between-group 
heterogeneities [10]. These models had three important features. 
First, it addressed the within-subject correlations resulting from 
subject-specific links nested within the same brain. Second, unlike 
previous mixed-effects approaches as described in [11-14], we did 
not assume equal variance among the autism and control groups and 
across links. Our assumption of unequal variances addressed both 
within-subject and between-group variability in the model. Third, 
our model compared two groups not at the global level, but at the 
local level. This is important for the goals of these types of studies, 
as the neurological condition group can vary from the control group 
at the link level. Our approach utilized a random subject effect to 
account for the correlation of multiple regions of interest within 
each subject, and allows each link to have a unique estimate of mean 
and variance for each group separately. Furthermore, the fixed 
effects parameters enabled us to detect disrupted connectivities at 
the link level for correlated measures with heterogeneities across 
groups. Our pragmatic approach was realistic, as it addressed the 
complexity of hierarchy while maintaining flexibility compared to 
other mixed-effects models used in the literature.

We generalize the concept of meta-analysis from a single effect 
size to multiple effect sizes. Generally, in meta-analysis, summary 
statistics from independent studies are combined to estimate the 
effect size [15]. In the presence of heterogeneity, model-based 
approaches of meta-analysis have been discussed [16-18]. In this 
article, estimated link specific parameters of the aforementioned 
mixed-effects model are used to estimate effect sizes. These effect 
sizes obtained from each study are then combined for every link 
to get the link specific effect size that measures the difference of 
connectivity of two groups at the link level. Thus, our meta-analysis 
approach estimates link specific combined connectivity, borrowing 

strength from all studies and addressing multidimensional 
heterogeneities in the context of multiple ROIs. In addition, the 
concept of FDR was developed with the goal of avoiding too 
many false positives while attaining more power to detect true 
positives [19] in multiple comparisons. In order to implement the 
FDR method, a q-value (FDR level) is required which represents 
the minimum FDR at which the test can be called significant. The 
novelty of this article is the determination of the FDR level by a 
rigorous exploration of p-values in order to estimate the proportion 
of true null hypotheses, and also to find the most suitable q-value 
cutoff necessary to get the optimal result.

Finally, to evaluate the proposed meta-analytic approach, we 
compared our results with some regularized regression models 
(LASSO, Elastic Net), and an embedded learning regression method 
(Random Forest) with a 10-fold cross validation scheme. Feature 
selection approaches select the most important disrupted links 
without going through hypothesis testing. Comparing results 
between the modeling approach and feature selection approaches, 
we are now able to examine the agreement between these two 
different sets of procedures. Based on the discoveries we made, we 
are able to determine some hubs of disruptions and their locations 
in known networks for interventions.

We organize the article as follows. In Section 2, we introduced 
methods and dataset used in this article. In Section 3, we generalize 
the meta-analysis concept using the parameters estimated by 
the mixed-effects model, discuss related hypotheses, and outline 
multiple testing procedures to control false discoveries. We further 
discuss briefly LASSO, Elastic Net and Random Forest. In this 
section, we also provide a rationale for the use of FDR instead of 
controlling type 1 error rate. In Section 4, we provide results from 
a study related to ASD (Autism Spectrum Disorders). We then 
discuss how these networks help us in correlating neurobehavioral 
symptoms in autistic subjects. Furthermore, we compare our 
model based results with Bayesian hierarchical method, feature 
selection approaches, and graph theory methodology. This section 
also examines the links found to be significant, identifies hubs 
of disruptions, and develops networks based on these hubs. We 
conclude the paper with some discussion in Section. [Table 1]

Table 1: Number of Subjects at Each Site.

Site Control Autism Total

Caltech 21 16 37

NYU 42 35 77

Olin 16 20 36

Pitt 28 30 58

Sbl 15 15 30

Sdsu 22 14 36

Sjh 25 22 47

Stanford 20 20 40

Total 189 172 361
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Methods and Materials

Dataset

For illustration, we study resting state fMRI data obtained 
from seven sites in Autism Brain Imaging Data Exchange (ABIDE) 
repository [20]. Data were collected from ABIDE site, which is a 
part of the 1000 Functional Connectome Project/International 
Neuroimaging Data-sharing Initiative (INDI) (http://fcon1000.
projects.nitrc.org). The Autism Brain Imaging Data Exchange 
(ABIDE) is an open-access multi-site image repository consisting 
of structural and rs-fMRI scans from ASD and TD individuals [20]. 
For our work, we use fMRI measurements from 8 medical centers 
(sites). Acquisition parameters, protocol information can be 
obtained at ABIDE site http://fcon-1000.projects.nitrc.org/in di/
abide/. We use preprocessed data using Connectome Computation 
System (CCS) pipeline as described at ABIDE sites. The number of 
subjects at each site is summarized in Table 1. All the sites except 
for NYU have fewer than 60 subjects. In total, we use 361 subjects, 
consisting of 189 healthy controls and 172 autistic subjects. 
Connectivity maps are obtained utilizing CONN toolbox (http://
www.nitrc.org/projects/conn). Using 42 bilateral Brodmanns 
[10] regions of interest (ROI), bivariate correlations are calculated 
between each pair of ROIs. The rs-fMRI network is captured by an 
84×84 symmetric matrix of nodes. We extract the upper triangle 
elements of the functional connectivity matrix as classification 
features, i.e. the feature space for classification was spanned by 
the (84×83)/2=3486-dimensional feature vectors. A list of all 
Brodmanns regions with their assigned numbers is given in [10].

Mixed-effects model

The mixed-effects model that we would like to develop should 
(i) have discriminating power for detecting disrupted connectivity 
at the link level while comparing two groups, (ii) be flexible enough 
to incorporate heterogeneities over links as well as across groups, 
and (iii) address correlations of multiple measures nested within 
subjects. We try to fulfill the normality assumption of random 
components by Fisher z transformation of the Pearson correlation 
measured for the connectivity of two regions. It is described in our 
paper [10].

Meta-analysis

In this section, we introduce the concept of meta-analysis in 
detecting disrupted connectivities. The fundamental difference 
between traditional meta-analysis and what we propose is that 
the former is based on a summary statistic, whereas our approach 
first uses a mixed-effects model and subsequently performs meta-
analysis using parameter estimates from the model. An additional 
challenge that we encounter is from testing one hypothesis to 
multiple hypotheses while implementing meta-analysis.

The main reason that different studies lead to different 
conclusions is that these studies are often performed at a single 

center with a relatively small sample. Results from a single-center 
study suffer from both type I and type II errors. As the number of 
regions under study is large (in our case, 3864 different links), the 
chance of making a type I error cannot be ignored and must be 
controlled. An analysis that combines data from multiple studies 
should reduce the number of false positives under the assumption 
that false positives occur randomly across different regions. Pooling 
data from various studies can increase the reliability of findings 
and power of statistical analysis. This brings in the notion of meta-
analysis. Meta-analysis has been shown to be superior to single-
site analysis as it reduces both the number of false positive and 
false negative results [4]. However, previous meta-analyses have 
not explicitly addressed the difference between sites (studies) or 
between site heterogeneity. In neuroimaging studies, the difference 
between sites can be caused by variations in scanner strength 
[21], study population [22] and analysis methods [23]. Inter-study 
variation can be a significant source of variation in neuroimaging 
studies [24, 21]. Many studies have shown that meta-analysis is a 
technique that makes efficient use of multi-site neuroimaging data 
[25]. In terms of the statistical testing framework, the hypothesis 
test for the effect size, denoted by θ, determined by the difference 
in mean between experimental and control group can be tested by

•	 0 : 0,H θ =

•	 6: 0.aH θ ≠

One of the central assumptions of meta-analysis is that the true 
effect size is the same for every study included in the analysis. The 

observed effect sizes , 1, 2,...,l l Cθ
∧

= , differ from study to study 
because of random error l in each study. The observed effect size is 
expressed as a function of the true effect size and random error as                        	

.l lθ θ ε
∧

= + (1)

The goal of meta-analysis in this context is to estimate the true 

effect size Ɵ from the estimated effect sizes lθ
∧

. This is accomplished 

by first estimating the variance 2
1σ  of each study and then meta-

analyze lθ
∧

 across studies. lθ
∧

 is assumed to have the following 
distribution:

lθ
∧ ( )2

1,N θ σ .       (2)

The overall effect size can be estimated by calculating the 

simple mean of the lθ
∧

if all studies in the analysis were equally 
precise. In many cases, however, some studies are more precise 
(due to larger sample size) than others. Thus, varying weights are 
assigned to these studies in the estimation of the true effect size. 
In order to obtain an accurate estimate of the overall effect size Ɵ 
and to perform statistical testing on θ, we calculate the weighted 
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average of lθ
∧

 and variance 
2

1σ
∧

. That is,

                    
C

ll l
wθ θ

∧ ∧

=∑ 	 (3)

                             2 2C
ll l

wσ σ
∧ ∧

=∑ (4)

where wl is the weight of study l. We assign 2

1 1
l

l

w
wσ

∧=
, where. 

2

1

l

w
σ
∧=∑

This approach is referred to as the inverse variance 
approach. Research has proved that the approach using inverse 
variance weighting is the optimal weight for meta-analysis (Hedges, 
1981).

To implement the meta-analysis concept, we run the 
aforementioned mixed-effects model separately for each study. 
Mixed-effects analysis by study yields study specific estimates of 
effect size and variance. These two estimates are used for the meta-

analysis. Let 
iklβ

∧ denote the estimate of iβ  from the lth study for ith 

link from kth group. Similarly, denote the variance of 
iklβ

∧  by 
ikl

Vβ , and 

the variance-covariance matrix of 
1

0 1,
ili l i l Vββ β

∧ ∧  = 
 

.

Denote the effect size for the ith link in the lth study by ilD , 

where	              1 0i l i lilD β β
∧ ∧

= −   (5)

The variance of ilD  is	   [ ], 1, 1 .
il

t
ilV HV H Hβ= = −          (6)

Hence, the weight for the ith link from the lth site is .
1

il

il

w
V
∧=  The 

overall effect size for the ith link, denoted by 
iθ , is estimated by

                                         1

1

C
il ill

i C
ill

w D

w
θ
∧

=

=

= ∑
∑

      (7)

The estimated variance of 
iθ
∧ is  	 1

1
1i C

l
il

Var

V

θ
∧

=

  = 
  ∑ (8)

The null hypothesis of iθ = 0 can be tested using a z-test. The 
resulting p-values are subject to FDR adjustment.

False discovery rate

As we see multiple hypotheses are involved in the searching 
process of disrupted connectivities in neuroimaging studies. The 
FDR is defined as “the expected proportion of false positive findings 
among all those rejected hypotheses” [26]. It has been shown that 
when the number of tests is large and the proportion of alternative 
hypotheses is high, methods that control FDR rather than the family 
wise error rate (FWER) resulted in higher power [27]. One of the 
real challenges in the FDR approach is in assigning a value to the 
minimum positive FDR (pFDR) at which the test can be called 

significant. The pFDR is defined as pFDR = E [F/S|S > 0], where F is 
the number of false positives and S is the total number of positives 
[28]. This is known as the q-value in the literature, and it has a 
close relationship to the p-value. For a set of tests conducted with 
independent p-values, the q-value of an observed p-value p is	                   

( ) inf ( )
p

q p pFDR
γ

γ
≤

= (9)

p-value is a measure of false positive rate (FPR), whereas 
q-value is a measure in terms of FDR. In this article, after employing 
mixed-effects analysis via an E-M algorithm, the q-value package 
[31] was used.

Feature selection methods

We employ three feature selection algorithms: LASSO, Elastic 
Net, and Random Forest.

LASSO and elastic net:  The LASSO regression [30], similar 
to the Ordinary Least Squares (OLS) regression minimizes the 
Residual Sum of Squares (RSS) under a condition that the sum of 
the absolute values of the coefficients is less than a constant. This 
simple modification allows LASSO to select important covariates 
(also known as features), as the inbuilt shrinkage procedure 
makes some coefficients to be shrunken exactly to zero. The 

LASSO computes model coefficients by minimizing 1
( )R β λ β+ , 

where ( )R β  is the mean square error on the training dataset and 

1 1

p
jj

β β
=

=∑ . λ  controls the degree of sparsity of the solution, i.e. 
the number of feature selections.

The idea of Elastic Net [24] is very similar to LASSO. In Elastic 

Net, the l1 norm of β  is replaced by a combination of l1 and l2 

norms. In this case, we minimize ( ) ( )R Pβ λ β+ ∝ , where	                                                                                                                            
2

2 1

1( )
2

P β β β− ∝
∝ = + ∝ (10)

for α strictly between 0 and 1, and a nonnegative λ . The λ  
parameter can be tuned in order to set the shrinkage level, and for 

larger values of λ , more coefficients are shrunk to 0. The Elastic 
Net penalty does automatic variable selection and continuous 
shrinkage simultaneously, and it can select from a group of 
correlated variables. This is in contrast to the LASSO, which tends 
to select only one variable from a group of variables with high 
pairwise correlations. It is especially useful for large p small n 
problems where the grouped variables situation is an important 
concern [24]. Implementation of these approaches are described 
in Section 4.3.

Random forest: Random forest, developed by Brieman 
[31], is an expansion of classification and regression trees. The 
motivation to random forest is bagging, a method of reducing 
variance by averaging many “noisy but approximately unbiased 
models” [31]. Random forest is a classifier consisting of a collection 
of K tree-structured classifiers {T(x,Θk),k = 1,2,...K}, where the Θk 

are independent and identically distributed random vectors that 
provide the terms of split variables, node cut points, and terminal 
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node values for the kth tree. For each tree, n observations with 
replacement from the training data are sampled. At each node, 
m out of p features, where m << p, are selected at random as 
candidates for the variable to be split [31].

Since each tree uses a bootstrapped sample for model building, 
the observations that are not used in the tree are a natural sample 
for testing the accuracy of the model. Although Random Forest 
utilizes all input features in building the trees, a measure of variable 
importance can be derived to identify important predictors. Each 
variable is permuted, and a tree is built, and a measure of fit for 
the forest with permutation is compared to the original forest [31]. 
However, in the high-dimensional case with positively correlated 
variables, this measure of variable importance may be misleading. 
In this case, when one of the variables is permuted, the difference 
in measure of variable importance for the permuted forest and 
original forest will not be large due to the presence of correlated 
variables [32].

Result

For an illustration of the aforementioned methodologies, we 
used the data described in Section 2.

 Determination of q-values

A histogram of p-values from mixed-effects models used in 
meta-analysis is provided in Figure 1. Under the null hypothesis, 

p-values follow a Uniform (0,1) distribution. In Figure 1, the 
p-values are relatively flat at the right tail of the histogram, 
indicating the validity of the assumption. Plots in Figure 2 direct 
us in determination of the q-value cutoff. [Figure 2(a)] shows the 

relationship between λ  and 0 ( )π λ
∧

, the estimated proportion of 
truly null hypotheses (24). Inspecting [Figure 2(a)], we see that at 

λ  = 1, 0 (1)π
∧

 = 0.919. This estimate is then used in equations 23 
and 24 to calculate the q-value for each corresponding p-value. The 
relationship between p-values and q-values is shown in Figure 2(b), 
and through this plot we can identify the corresponding p-value 
for our specified level (q-value) of FDR. For example, for a p-value 
cutoff of 0.002, the corresponding q-value is around 0.18. In [Figure 
2(c)], we can see the number of significant links for each q-value. 
Thus, for a q-value cutoff of 0.275, the number of significant tests 
is 48. [Figure 2(d)] shows the relationship between the number 
of significant tests and expected false positive. Inspecting [Figure 
2(c)], we observe that there is a hugely notable jump in significant 
tests at q = 0.275. Thus, we take a q-value cutoff of 0.275, which 
leads to 48 significant tests. Based on [Figure 2(d)], we find that out 
of 48 significant tests, approximately 13 are expected to be false 
positives. For mixed-effects analysis only and hierarchical Bayesian 
analysis, a similar approach to that described for meta-analysis in 
determining the FDR level yielded a q-value equal to q = 0.3. [Figure 
1], [Figure 2] and [Table 2]

Table 2: Significant Links by Meta-Analysis.

Number Link P-values Number Link P-values Number Link P-values

1 63-64 7.00E-07 17 34-60 0.00043 33 21-25 0.00192

2 Aug-35 7.90E-07 18 63-72 0.00048 34 38-74 0.002

3 63-66 3.50E-06 19 59-62 0.0005 35 17-47 0.00208

4 14-54 4.30E-05 20 20-38 0.00051 36 31-80 0.00208

5 14-27 5.20E-05 21 63-70 0.00061 37 Jul-68 0.0023

6 61-66 8.30E-05 22 27-52 0.00066 38 33-41 0.00268

7 63-68 0.00015 23 Jul-48 0.00069 39 25-77 0.00277

8 61-70 0.00017 24 38-54 0.00074 40 61-72 0.00307

9 62-63 0.00025 25 62-65 0.00074 41 26-May 0.00311

10 Jul-66 0.00027 26 22-61 0.00097 42 39-68 0.00328

11 Aug-74 0.00029 27 57-82 0.00101 43 Apr-45 0.00331

12 8-Jul 0.00033 28 28-47 0.00105 44 Aug-65 0.00357

13 22-55 0.00034 29 17-29 0.00129 45 25-Jul 0.00358

14 Jul-62 0.00039 30 15-44 0.00151 46 20-Aug 0.00386

15 65-66 0.0004 31 61-62 0.00162 47 Aug-57 0.00388

16 65-76 0.0004 32 33-38 0.00168 48 33-62 0.00411
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Figure 1: Histogram of p−values from Meta−Analysis.

Figure 2: Estimation of Expected False Positives. 

Meta-analysis results with interpretation

Using our meta-analysis approach, 48 links were identified 
as significant at FDR=0.275. Significant disrupted links are given 
in Table 2. These links identified by this study may be used to 
guide the development of autism therapeutic interventions and 
to classify and predict patients into higher risk groups. Figure 
3 is a graphical representation of all the links that are identified 
as significantly different between autism and control by meta-
analysis. Furthermore, Figure 4 is a brain network of the links 
identified. The regions with more than 5 or more significant 
links are highlighted in red. Regions 7 (BA.13 L. Insular Cortex), 8 
(BA.13 R. Insular Cortex), 61 (BA.41 L. Primary Auditory Cortex), 
62 (BA.41 R. Primary Auditory Cortex) and 63 (BA.42 L. Primary 
Auditory Cortex) are identified as a hub region as each of them 
has 5 or more links that are deemed to be significantly different 
between autism and control. These hubs are concentrated within 
the Insular Cortex and the Primary Auditory Cortex. The Insular 
Cortex is known to be an integration center for motor function, 
and an interruption between the Insular Cortex and Primary 

Motor Cortex may result in reducing motor control [33]. Additional 
disruptions existed between the Insular Cortex and the Primary 
Auditory Cortex, Inferior Prefrontal Gyrus, Middle Temporal Gyrus, 
and Subcentral Area. Imaging studies have shown that the Insular 
Cortex processes vocal communication signals from the Primary 
Auditory Cortex [34]. While the Inferior Prefrontal Gyrus is known 
to process language syntax, the Middle Temporal Gyrus has been 
associated with facial recognition and assessment of word meaning. 
Furthermore, the Subcentral Area affects language processing and 
social cognition. Disruptions within the Insular Cortex suggest 
a difference in the ability to accurately comprehend and respond 
to communications with others between those with autism and 
control. Effects of auditory ability on social communication and 
language comprehension may also be a result of several disruptions 
within the Auditory Cortex, between the Auditory Cortex and 
Subcentral Area, and between the Left Primary Auditory Cortex and 
Dorsolateral Prefrontal Cortex. A disruption between the Auditory 
Cortex and Subcentral Area may reduce auditory response [35], 
while issues with the Prefrontal Cortex disrupt auditory detection 
and discrimination [36]. [Figure 3, 4], [Table 3]
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Table 3: Links Identified as Significant Across Different Methodologies.

Link Meta-Analysis LASSO Elastic Net Random Forest

63-64 x x x x

Aug-35 x x x x

63-66 x x x x

14-54 x x x x

14-27 x x x  

61-66 x      

61-70   x    

62-63    

107-66 x   x  

Aug-74 x x x  

8-Jul x      

20-38 x x   x

63-70   x    

57-82 x x    

25-77   x    

Figure 3: Network hub plot. 

Result of comparison methodologies]

Disrupted connectivities: In addition to using our meta-
analysis approach, we analyze the data with three feature selection 
algorithms for comparison. In Elastic Net, we varied the parameter 
alpha from .1 to .9 and selected the best parameter based on 
minimum squared error. For Lasso, we fixed alpha to 1.0. In both 
cases parameter lambda was tuned with a 10-fold CV. In Random 
Forest, a measure of variable importance is utilized to identify 
variables that are crucial in the predictive capability of the forest. 
The mean decrease in Gini is used as the measure of variable 
importance. [Table 3] contains all links identified as significant via 
our comparison methodologies.

Key hubs: Table 4 contains significant hubs identified via 
two methods: meta-analysis of disrupted links and graph theory. 
Using meta-analysis, we identify regions with 5 or more significant 
links in red and 4 significant links in green as notable hubs. The 
network hub plot of these results is shown in [Figure 4]. Using 
graph theory, we examine the betweenness centrality of individual 
nodes to understand how underlying hub architecture may relate 
to altered community structure. In both groups, nodes where the 
betweenness centrality is greater than 2 standard deviations from 
the average betweenness centrality of the network are considered 
hubs. Furthermore, hubs with a corrected FDR p-values less than 
0.05 are considered significant. Three disrupted hubs are identified 
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in the autism group compared to the control group using meta-
analysis and graph theory: 8 (BA.13 R. Insular Cortex), 62 (BA.41 
R. Primary Auditory Cortex), and 65 (BA.43 L. Subcentral Cortex). 
Furthermore, although the side of the brain differs, the Cingulate 

Cortex is identified as a disrupted hub via both methodologies. This 
agreement between these two methods helps us detect key hubs 
in understanding differences in autism patients compared [37-41]. 
[Table 4]

Figure 4: Brain network from meta-analysis.

Table 4: Identified Hubs.

Region Number Region Description Meta-Analysis Graph Theory

7 BA.13 Insular Cortex (L) x  

8 BA.13 Insular Cortex (R) x x

37 BA.30 Cingulate Cortex (L)   x

38 BA.30 Cingulate Cortex (R) x  

45 BA.34 Anterior Entorhinal Cortex (L)   x

61 BA.41 Primary Auditory Cortex (L) x  

62 BA.41 Primary Auditory Cortex (R) x x

63 BA.42 Primary Auditory Cortex (L) x  

65 BA.43 Subcentral Cortex (L) x x

66 BA.43 Subcentral Cortex (R) x  

76 BA.5 Somatosensory Association Cortex (R)   x
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Conclusion

This article uses a holistic approach to detect significant 
disrupted connectivities and their hub(s). The mixed-effects only 
model pooled subjects from eight sites and selected features 
ignoring site variations. Meta-analysis does not suffer from site 
variations but rather uses the inverse of link-specific site variances 
as weights. As a result, meta-analysis selects the maximum number 
of features and yields the highest prediction accuracy. The overall 
accuracy of all methods needs to be improved. Authors of this 
article are exploring various spatiotemporal models in the Bayesian 
setting to improve modeling of voxel activations for resting 
fMRI data with high resolutions. Developing a spatial Bayesian 
model, or an adjacency matrix for the whole brain study, is a real 
challenge. Several approaches are being implemented to see the 
impact on accuracy. The hub(s) with the highest accuracy will be 
recommended for use in therapeutic intervention.
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