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Introduction
Many clinical trials and other statistical experiments are 

conducted to test not one but many hypotheses. Often a decision has 
to be made on each individual null hypothesis instead of combining 
them into one composite statement. Most of the clinical trials of 
new medical treatments have to establish both their safety and 
efficacy, often involving multiple endpoints or multiple competing 
treatments [1-4]. For example, recent clinical trials of Prometa, a 
drug addiction treatment, included testing for multiple side effects 
as well as multiple criteria of effectiveness such as reduction of 
craving, improvement of cognitive functions, and frequency of drug 
abuse [5,6]. Studies of genetic association explore multiple genes 
and multiple single nucleotide polymorphisms, or SNPs [7-9].

It is still common in applied research to conduct multiple tests, 
each at a nominal 5% level of significance, and report only those 
results where significant effects were observed. Anderson [10] 
estimates that 84% of randomized evaluation articles in diverse 
fields test five or more outcomes, and 61% test ten or more, but 
they fail to adjust for multiple comparisons. Clearly, when each 
hypothesis is tested at a given level α , the probability of committing 
a Type I error and reporting at least one significant effect is much 
higher than α even when no effects exist in the population and all 
the null hypotheses are true.

For this reason, a number of methods for multiple comparisons 
have been developed to control a familywise error rate (FWER) 
which is the probability of rejecting at least one true null 
hypothesis, see [11-14] for the overview. The Bonferroni approach, 
due to its simplicity, arguably remains the most commonly used 
method of multiple testing. Each individual hypothesis is tested at 
a significance level jα  , guaranteeing that FWER α≤  as long as 

jα α∑ ≤ . However, the underlying Bonferroni (Boole) inequality 
{ } { }j jA AΡ ≤ ∑Ρ is not sharp, leaving room for improvement. 

Enhancing the Bonferroni method, Holm [15] proposed a 
scheme based on the ordered p-values. Developing upon Holm’s 
idea, step-up and step-down methods for multiple testing have 
been developed for non-sequential [11,16-19] and most recently, 
sequential experiments [20-23]. These Holm-type methods (also 
called stepwise for testing marginal hypotheses in the order of their 
significance) allow to use higher levels of jα leading to increased 
power, while still controlling FWER.

These stepwise methods and most of the other approaches to 
multiple tests do not account for different levels of difficulty of the 
participating tests, or proximity between null hypotheses and their 
corresponding alternative hypotheses. Why should we take this 
into account when designing statistical experiments?
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Example. As a simple example, consider simultaneous testing 
of three endpoints in a clinical trial, where the null parameter 
differs from the alternative parameter by 0.35 standard deviations 
in the first test, by 0.30 standard deviations in the second test, and 
by 0.25 standard deviations in the third test. What sample size 
suffices for controlling FWERs at 0.05α = and 0.10β = , assuming 
normal measurements with known standard deviations?

Following the standard Bonferroni approach, we conduct each 
test at / 3jα α=  and / 3jβ β= , and this requires 129 observations 
to conduct the first test, 175 for the second test, and 252 for the 
third test, computed by the formula ( )2 2

/3 /3 /j jn z zα β δ= +  , where 

jδ is the distance between the null and alternative parameters 
measured in respective standard deviations. It is not surprising 
that the easiest test #1 (because it is easier to detect a larger 
difference between the null and the alternative hypotheses) 
requires the smallest sample size. Imagine, however, that all three 
data sequences are obtained from the same sampling units such 
as patients each answering three questions in their questionnaire 
or measuring concentrations of three substances in their blood 
samples. Then we still need to sample all 252 patients to guarantee 
the FWER control!

Since three tests had differing levels of difficulty, the uniform 
error spending ( )/ 3, / 3, / 3α α α  and ( )/ 3, / 3, / 3β β β  was not 
optimal. As it is shown in Theorem 3.1 of De and Baron [24], 
the asymptotically most difficult test should optimally receive 
almost the entire allowed error probability, in the extreme 
case under the Pitman alternative. We do not have a limiting 
case here, but there is ample room for improvement. A better 
error spending is ( )1 2 30.006, 0.014, 0.030α α α= = =  and 
( )1 2 30.011, 0.028, 0.061β β β= = = . In this case, a sample of 189 
patients instead of 252 is sufficient, for a pure 25% saving, using 
the (generalized) Bonferroni procedure.

Stepwise procedures have a potential to increase this saving 
even further. However, the Holm method does not distinguish 
between “easy” and “difficult” tests. The Holm-adjusted levels of 
significance are ( )/ , / 1 ,....,d dα α α− , regardless of the tested null 
and alternative parameter values and their proximity. In this paper, 
we generalize the Holm method to allow higher than Bonferroni 
significance levels and, at the same time, to account for the difficulty 
levels, which results in reduced required sample sizes.

The key in this optimization is minimaxity of the optimal error 
spending. Indeed, the sample size is determined by the test that 
requires the largest number of patients, because we need enough 
data to reach decision for each individual hypothesis. Minimizing 
the overall sample size implies minimizing the largest sample size 
among individual tests, and thus, the solution of this problem is 
minimax. The form of this solution is an equalizer rule [25], defined 
in this case as such error spending that equalizes the required 
sample sizes.

We show in this article how the optimal solution can be 
calculated and derive Bonferroni and Holm-type procedures that 
follow this minimax rule. Even for the tests where the levels of 

difficulty are close (but not equal), these new methods may result 
in substantial cost saving.

Problem Formulation
Consider a sample of multidimensional measurements

( )1, , , nX X , where each d
iX ∈   its j-th component ijX  the j-th 

endpoint for the i-th patient, has a marginal distribution with 
density ( )( )j

jf x θ  with respect to some probability measure jµ  and
( ) ( )1 ,.... dθ θ  are parameters of interest. Components of the same 

observed vector may be correlated; however, we do not assume 
any knowledge of their joint distribution and use only the marginal 
distributions for our statistical inference. For example, iX  may be 
vital signs measured on the i-th patient or responses of the i-th 
survey participant.

The goal is to conduct d tests of
( ) ( )

0 0: j jH θ θ=  vs ( ) ( )
1: j j

AH θ θ= , j = 1, . . . , d,   (2.1)

controlling Type I and Type II familywise error rates

maxIFWER
τ φ≠

= Ρ {at least one Type I error | τ }=

maxII F
FWER

φ≠
= Ρ {at least one Type II error | τ }= 

        
(2.2)

where { }1,...., dΤ ⊂ is the index set of true null hypotheses, and 
F=T is its complement, the index set of false nulls.

In this article, we seek efficient non-sequential multiple testing 
procedures for (2.1). Under conditions

IFWER α≤  and IIFWER β≤  (2.3)

we aim at minimizing the required sample size n (and therefore, 
the overall cost of the experiment) by using efficient test statistics 
and optimal error spending.

A Clinical Trial of Flector

To see the size of potential saving, let us consider a simple case 
of testing means of two normal distributions

                                                                                            (3.1)

based on a sample of bivariate normal random vectors 
1,..., nX X

with mean ( ) ( )( )1 2,θ θ  known standard deviations ( ) ( )1 2,σ σ , and 
unknown correlation ρ .

Such a situation appeared, for example, in the design of a recent 
clinical trial of Flector, a patch containing a topical treatment of 
ankle sprains. Patients were randomized to three groups - a brand 
name Flector patch, its generic version, and placebo. The trial was 
designed to support two statements - (1) that the generic patch 
is as effective as the brand name, and (2) that both of them are 
better than placebo. Thus, test 1 establishes bioequivalence of two 
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treatments and test 2 establishes efficacy, where the two active 
treatment arms are merged and compared against the placebo arm. 
By the standard protocol, bioequivalence is established if r, the ratio 
of three-day mean pain reduction levels between generic and brand-
name patients, has a 90% confidence interval entirely within the 
interval [0.8, 1.25]. Since we are actually interested in confirming 
that the generic patch is at least as efficient as the Flector patch, 
both tests can be reduced to the form (3.1), where ( )1 rθ = (testing r 
= 0.8 vs r = 1.0) and ( )2

T Pθ µ µ= ∆ = − is the difference in the mean 
pain reduction levels between the merged active treatment group 
and the placebo group (testing 0∆ =  vs 4∆ = ) Standard deviations

( )1 0.373σ =  and ( )2 19.01σ = estimated from the previous studies 
of similar products such as Lionberger et al. (2011), imply the 
standardized distances

( )
1 0

1 1 0.54r rδ
σ
−

= = and ( )
1 0

2 2 0.21δ
σ

∆ −∆
= =

and thus, the test of efficacy appears more difficult than the 
test of bioequivalence. As conducted at the actual marginal levels 
of 1 1 2 20.05, 0.01, 0.05, 0.14α β α β= = = = these tests required 
n = 169 patients in each treatment arm (the actual trial included 
170 patients in each arm), and with this sample size, both test 
statistics appeared approximately normal.

Chosen to control individual error probabilities, this sample 
size actually suffices to keep the Type I familywise error rate at the 
same level 1 0.05α = . The optimal error spending in this case is

0.05 = 0.00002+ 0.04998. (3.2)

That is, it is most efficient to split 1 0.05α = very unevenly into 

1 0.00002α = and 2 0.04998α = , due to different levels of difficulty. 
In other words, with one test being so much “easier” than the other, 
the whole trial can be planned to test the most difficult hypothesis, 
whereas the “easier” test can then be conducted practically at no 
additional expense, matching the result in Theorem 3.1 of De and 
Baron [24].

Such an unequal error spending is explained in Figure 1. We 

see that almost all the error is spent on the more difficult test if
( )1 2/ 0.5, 2.0δ δ ∉ i.e., one test is at least twice as difficult as the other 

(Figure 1).

Figure 1: Optimal error spending of   for the case of d = 2 tests 
of normal means.

A simple computation shows that uniform α -spending for 
testing (3.1) with the listed 1,2β and FWERI of 0.05α =  requires 
a sample of size n = 210 in each treatment arm whereas n = 169 
suffices with error spending (3.2), using the Bonferroni method.

Table 1 shows the optimal error spending of 1 0.05α =  and

1 0.10β =  for the case of d = 2 tests, with different levels of difficulty 

1,2δ . Naturally, the optimal split of  δ  and β  becomes more uneven 
when 2δ  differs substantially from 1δ . For testing 0.25θ =  against

0.3θ = , the more difficult test already receives more than two-
thirds of the allowed error probability. When 2 1/ 2δ δ >  the 
required sample size N = 138 is the same as one needs to conduct 
just a single test of ( )1

0H . Thus, optimal error spending allows to 
add substantially easier tests at practically no extra cost, while 
controlling the familywise error rates. For the comparison, the 
uniform error spending and the standard Bonferroni adjustment 
for multiple comparisons requires N = 201 for each of these tests.

The Holm-type stepwise approach provides further saving 
(Table 1).

Table 1: Optimal error spending of 1 0.05α = and 1 0.10β =  for two tests and the required sample size N.

1δ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

2δ 0.26 0.27 0.28 0.29 0.3 0.35 0.4 0.45 0.5 0.6 1 ∞

1α 0.027 0.029 0.031 0.033 0.035 0.042 0.046 0.049 0.05 0.05 0.05 0.05

2α 0.023 0.021 0.019 0.017 0.015 0.008 0.004 0.001 0 0 0 0

1β 0.053 0.057 0.06 0.062 0.065 0.077 0.086 0.092 0.096 0.099 0.1 0.1

2β 0.047 0.043 0.04 0.038 0.035 0.023 0.014 0.008 0.004 0.001 0 0

N 201 194 188 182 177 159 149 143 140 138 138 138

Minimax Error Spending
Minimax problem and equalizer solution

The optimal error spending in Section 3 is calculated by 
attaining the same sample size that is required to conduct each test 
in (3.1).

Indeed, as we know (for example, from [26], ch. 4), the 
minimum sample size needed to test the j-th normal mean at levels 

jα  and jβ  is

( ) ( ) 21 1

, 1,...., ,j j
j

j

n j d
α β

δ

− −  Φ +Φ  = =
  
  

                                (4.1)
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 where ( ) ( )
1 0 /j j

j jδ θ θ σ= − and ( )Φ ⋅ is a standard normal cdf. 
A conclusive decision on each of d tests requires a sample size 

( )max jn n= . Thus, minimization of the required sample size,

( )min max jn  is a minimax problem, and its solution is an equalizer 
rule (Berger, 1985, ch. 5), which is such error spending { },j jα β
that yields

                                        
1 2 ... dn n n= =                                   (4.2)

intuitively, optimality of the equalizer testing scheme is natural. 
Consider error probabilities ,j jα β  that correspond to unequal 
sample sizes jn  given by (4.1). Then, slowly incrementing error 
probabilities jα  and jβ that correspond to the largest sample size 

jn at the expense of smaller sample sizes, we reduce the overall 
sample size ( )max jn n= . The only situation when such reduction 
is no longer possible is when all jn  are equal, following the 
(generalized) Bonferroni approach, this minimax problem reduces 
to solving (4.2) in terms of { },j jα β  and minimizing the common 

jn  among all the existing solutions, subject to jα α∑ =  and jβ β∑ =

For the tests of normal means, a convenient solution, close to being 
minimax, is

               ( )j jcαα δ= Φ − and ( )j jcββ δ= Φ −                    (4.3)

where cα   is the solution of equation ( )jj cαδ αΦ − =∑  and cβ
solves ( )jj cβδ βΦ − =∑ . These equations have unique solutions 
because the function ( ) ( )jjg t tδ∑= Φ −  is continuous and 
monotonically decreasing from d/2 ≥ 1 at t = 0 to 0 at t = +∞

. It follows from (4.1) that error spending (4.3) is an equalizer, 
although it is the optimal equalizer only when  α β= . Why is there 
more than one equalizer solution? We are choosing (2d) marginal 
significance levels { },j jα β  for 1,.....,j d=  under two constraints 
on jα∑  and jβ∑ Additional (d − 1) constraints appear in (4.2). 
Therefore, we have (d+1) equations and (2d) variables to choose, 
giving us at least one degree of freedom for all d ≥ 2 and a room to 
minimize the common sample size jn .

General distribution and Bahadur efficiency

For non-normal distributions, computation of the exact sample 
size necessary to attain a given significance level and power is 
“extremely difficult or simply impossible”, hence, a symptotics are 
being used (Nikitin, 1995, sec. 1.1) [27]. For distributions that are 
approximately normal, this approximation yields a rather accurate 
estimation of the necessary sample size [28] (Dzhungurova and 
Volodin, 2007). Then, error spending (4.3) is nearly optimal, and 
sample size (4.1) is nearly sufficient for the control of FWERI and 
FWERII at levels α  and β . For the general case, the asymptotic 
result of Bahadur [29] about p-value ( )jp of the j-th test states that

                  

( )( ) ( )1liminf log
j

j j
An

j

p K
n→∞

≥ − ,                    (4.4)

where ( ) ( ) ( )( )1 0,j j j
AK K θ θ=  is the Kullback-Leibler information 

number between ( )j
AH  and ( )

0
jH . Equality in (4.4) is attained by 

the likelihood ratio test (LRT) that rejects ( )
0

jH  for large values of 
statistic

( )
( )( )
( )( )

( )( )
( )( )

1 1 1

11 0 1

,.....,
log log ,

,.....,

j j
nj j nj j ijj

n j j
ij j nj j ij

f X X f X

f X X f X

θ θ

θ θ=

Λ = =∑
      

 (4.5)

          
making this test Bahadur asymptotically optimal (Bahadur, 1967, 
part II). Since our minimax problem is solved by an equalizer, 
and since the decision on each test is determined by comparing 
p-values ( )jp  with marginal significance levels jα , this suggests to 
choose the error spending jα with ( )log jα  proportional to ( )j

AK  In 
other words, the Bonferroni procedure for multiple testing that is 
based on log-likelihood ratio statistics (4.5) for each marginal test, 
with error spending

( )( )exp j
j Ac Kαα = −

cα being the unique solution ( )( )exp j
j Ac Kα α∑ − = is 

asymptotically optimal in Bahadur sense, and it controls the Type I 
familywise error rate at level α  [30-35]. Similarly, the Type II error 
spending ( )( )0exp j

j c Kββ = −  with cβ solving ( )( )0exp j
j c Kβ β∑ − =

controls FWERII.

If a sample is sufficiently large, the multiple testing 
procedurewith the introduced α - and β -spending controls 
both familywise error rates simultaneously. To see this, we notice 
that in order to control the probability of Type I error, each 
marginal LRT rejects the corresponding null hypothesis ( )

0
jH  if

( ) ( ) ( ) ( )({ }0min :j j j
n j n ja n a a H αΛ = = Ρ Λ ≥ ≤ .

By Chebyshev’s inequality, 

( ) ( )({ }
( )( )
( )( )( )

( )( )
( )( )
1

0 2 2

00

0,
j j

nj j
n

jj
n

Var nVar
a H

a nKa E

Λ Λ
Ρ Λ ≥ ≤ = →

+− Λ

as n →∞  for any a∈  hence ( )ja n →−∞ .

similarly, to control the Type II error, we accept ( )
0

jH if 
( ) ( ) ( ) ( )( ){ }max :j j j
n j n A jb n b b H βΛ < = Ρ Λ < ≤ → +∞

hence ( ) ( )j ja n b n≤  for sufficiently large n, which implies that

IFWER α≤  and IIFWER β≤

Generalized Holm method

Instead of comparing marginal p-values ( )jp  with ,j jα α α∑ =

Holm [23] (1979) proposed to compare the ordered p-values
[ ] [ ] [ ]1 2 .... dp p p≤ ≤ ≤

against α  levels ( )1 2/ , / 1 ,...., dd dα α α α α α= = − = that are 
generally larger, with the sum jα α∑ > Choosing larger α -levels 
increases the power of tests, or, given the same power, they require 
a smaller sample. Then, the null hypotheses [ ]

0
jH corresponding 

to the ordered p-values are arranged in the same order, and 
[ ] [ ]1
0 0,......., mH H are rejected, where [ ]{ }max : j

jm j p α= ≤  . These 
rejected hypotheses correspond to m most significant p-values.

This multiple testing procedure controls IFWER α≤  [15] 
(Holm, 1979).

Holm’s method does not account for different levels of difficulty 
of tested hypotheses. However, it can be generalized to allow 
optimal solutions similar to (4.6) in the following way [36-41].
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Let us order the Kullback Leibler information numbers 
[ ] [ ]1
0 0.... dK K≤ ≤ under the null hypotheses ( )

0
jH and [ ] [ ]1 .... d

A AK K≤ ≤

under the alternatives ( )j
AH . Then, let ak be the unique solution of 

the equation

[ ]{ }
1

1

1
exp

d k

k A
j

a K α
− +

=

− =∑

Also, consider statistics 
( ) ( )( ) ( )log /j j j

Aq p K= − and order them, 
[ ] [ ]1 .... dq q≥ ≥ .This order may differ from the ordering of p-values 
[ ]jp .In the new multiple testing procedure, we compare the ordered 

values [ ]jq against the corresponding critical values ja . Like Holm’s 
method, the null hypotheses [ ] [ ]1

0 0,......., mH H , corresponding to 
the ordered [ ]jq , are rejected for [ ]{ }max : j

jm j q a= ≥  and all 
( )
0

jH  are accepted (not rejected) if [ ]j
jq a< for all j. This type of a 

multiple testing procedure is step-down because it tests marginal 
hypotheses in steps, moving from the most significant q-value to 
the least significant one, rejecting null hypotheses one at a time, 
and accepting all the remaining hypotheses once any one of them 
fails to be rejected.

We show that this multiple testing scheme controls the Type I 
familywise error rate. First, we notice that the critical values ja  are 
also arranged in a non-decreasing order.

Lemma 1. The critical values ka  given as solutions of (4.7) 
satisfy the inequality, 1 .... da a≥ ≥ .

Proof. If 1k ka a −> for some k = 2, . . . , d, then we arrive at a 
contradiction,

[ ]{ } [ ]{ } [ ]{ }
1 2 2

1
1 1 1

exp exp exp
d k d k d k

j j j
k A k A k Aa K a K a Kα α

− + − + − +

−= − < − < − =∑ ∑ ∑

Theorem 1. The proposed step-down multiple testing procedure 
with critical values aj given by (4.7) for weighted p-values [ ]jq  
controls the Type I familywise error rate,

IFWER α≤

Proof. The proof follows the general idea of Holm [15], adapted 
to weighted p-values [ ]jq  and error spending (4.7). Considering the 
ordered null hypotheses [ ]

0
jH , let J be the first index of a true null 

hypotheses, [ ]{ }0min : jJ j H= . In particular, it implies that the first (J − 
1) null hypotheses are false. Hence, the number of false hypotheses 

1F J≥ − .

The next fact to notice is that at least one Type I error occurs 
if and only if [ ]

0
jH is rejected. Indeed, acceptance Of 

[ ]
0

jH means 
acceptance of all hypotheses [ ]

0
jH  for j > J, and since all [ ] [ ]1 1

0 0,...., JH H −

are false, there will be no

Type I errors in this case. Therefore,

[ ]{ } [ ]{ } ( ){ }0 maxj J j
I J jj T

FWER H rejected q a q a
∈

= Ρ = Ρ ≥ = Ρ ≥   (4.8)

  
( ){ } ( ){ } ( ){ }1j j j

J J F
j T j T j T

q a q a q a +
∈ ∈ ∈

= Ρ ≥ Ρ ≥ ≤ Ρ ≥∑ ∑

              (4.9)
  

   

                   

( ) ( ){ }1
1exp Fj

A F
j T

p K a+
+

∈

= Ρ ≤ −∑
                    

 
(4.10)

 ( ) [ ]( )1
1

1
exp exp 1F j

A A dF
j T j

K a K a
τ

τ α+
+

∈ =

≤ − ≤ − − + =∑ ∑
  (4.11)

Here, the last inequality in (4.9) follows from Lemma 1; (4.10) 
from the definition of ( )jq the first inequality in (4.11) from the 
inequality ( ) ( ){ }0

j jp t H tΡ ≤ ≤  (for example, from (1.2.1) of Nikitin, 
1995) [29]; the second inequality of (4.11) from the increasing 
order of [ ]jK ; and the remainder of (4.11) follows from (4.7) with 

1 1k F d τ= + = − + .

Naturally, when all tests have the same difficulty level, in terms 
of 1 ..... d

A AK K= =  , then equation (4.7) is

solved by ( )( )log / 1 /k Aa d k Kα= − − + and the generalized 
Holm procedure becomes the standard Holm’s as a special case.

As another extreme, suppose that one test is much more difficult 
than the other tests, namely, [ ] [ ]1 , 1j

A AK K j >
Then equation (4.7) 

is approximated by

[ ]{ } [ ]{ }
1

1

1
exp exp

d k
j

k A k A
j

a K a K α
− +

=

− ≈ − =∑

from where ( ) [ ]1log /k Aa Kα= −

Comparison
An extensive study of different scenarios may be required in 

order to evaluate the range of saving brought by each multiple 
testing method – Holm-type stepwise versus Bonferroni, weighted 
versus unweighted, and sequential versus non-sequential, for 
various distributions. Here, we just consider an illustrative example.

Consider testing two hypotheses about normal means. Observed 
is a sample of random vectors  1,...... ,nX X  where ( ),1 ,2,i i iX X X=

( )( )1
,1 ,1 ;iX Normal θ  test ( ) ( )1 1

0 : 0H θ =  vs 
( ) ( ) ( )1 1 1:A AH θ θ=

( )( )2
,2 ,1 ;iX Normal θ test ( ) ( )2 2

0 : 0H θ =  vs ( ) ( ) ( )1 1 2:A AH θ θ=

Table 2: Required sample size E(T) for sequential multiple testing 
procedures. The standard Bonferroni and Holm type stepwise tests are 
compared with their optimized versions designed under minimax error 
spending.

Alternative 
parameters

Methods of multiple testing 
and required sample sizes

( )1
Aθ

( )2
Aθ

Bonferroni 
method

Generalized 
Bonferroni

Stepwise 
method

Weighted 
Stepwise

0.5 0.5 52 52 44 44

0.4 0.5 82 67 66 59

0.3 0.5 145 102 117 97

0.2 0.5 325 215 262 215

0.1 0.5 1300 857 1047 857

When the two tests have different levels of difficulty, the optimal 
error spending brings considerable cost saving, see Table 2. Smaller 
sample sizes due to the proposed minimax error spending method 
are seen in columns “Generalized Bonferroni”, compared to the 
standard Bonferroni method, and “Weighted Stepwise”, compared 
to the standard stepwise Holm method (Table 2).
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The weighting approach brings no saving for the case when 
( ) ( )1 2
A Aθ θ= , when the two tests have the same level of difficulty. 

The proposed method is only efficient when tests have different 
difficulty levels. Saving due to minimax error spending increases 
as the difference between two tests increases. When the test of

( ) ( )1 1
0 : 0H θ =  vs ( ) ( ) ( )1 1 1:A AH θ θ=  is five times as difficult as the test of 
( ) ( )2 2
0 : 0H θ =  vs ( ) ( ) ( )1 1 2:A AH θ θ=  the minimax approach requires 443 

fewer patients (34% saving) to conduct the Bonferroni procedure, 
and 190 fewer patients (18% saving) to conduct stepwise testing.
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