

ISSN: 2641-6336

Annals of Biostatistics & Biometric Applications

DOI: 10.33552/ABBA.2019.01.000518

Review Article

Copyright © All rights are reserved by Clement Boateng Ampadu

The Ampadu-G Family of Distributions with Application to the T-X(W)Class of Distributions

Clement Boateng Ampadu*

Department of Biostatistics, USA

*Corresponding author: Clement Boateng Ampadu, Department of Biostatistics, USA.

Received Date: February 14, 2019 Published Date: February 22, 2019

Abstract

The T-X(W) family of distributions appeared in [1]. In this paper, inspired by the structure of the CDF in the Zubair-G class of distributions [2], we introduce a new family of distributions called the Ampadu-G class of distributions, and use it to obtain a new class of distributions which we will call the $A_T-X(W)$ class of distributions, as a further application of the T-X(W) framework. Sub-models of the Ampadu-G class of distributions and the $A_T-X(W)$ class of distributions are shown to be practically significant in modeling real-life data. The Ampadu-G class of distributions is seen to be strikingly similar in structure to the Exponentiated EP (EEP) model contained in [3], and the Zubair-G class of distributions is seen to be strikingly similar in structure to the Complementary exponentiated Weibull-Poisson (CEWP) model contained in [4].

Keywords: Zubair-G; T-X(W) family of distributions; Ampadu-G

Introduction

Background on the T-X(W) family of distributions

Definition 3.1: [1] Let r(t) be the PDF of a continuous random variable $T \in [a, b]$ for $-\infty \le a \le b \le \infty$ and let R(t) be its CDF. Also let the random variable X have CDF F(x) and PDF f(x), respectively. A random variable B is said to be T - X(W) distributed if the CDF can be written as the following integral

$$\int_{a}^{W(F(x))} r(t) dt = R(W(F(x)))$$

where W(F(x)) satisfies the following conditions

- a) $W(F(x)) \in [a, b]$
- b) W(F(x)) is differentiable and monotonically non-decreasing

c)
$$\lim_{x\to\infty} W(F(x)) = a$$
 and $\lim_{x\to\infty} W(F(x)) = b$

Remark 3.2: By differentiating the RHS of the above equation with respect to x, the PDF

of the T-X(W) family of distributions can be obtained.

Remark 3.3: If the continuous random variable T has support [0,1], we can take

$$W(x) = x^{\alpha}$$

where $\alpha>0$. In particular, we will say a random variable B is T-X(W) distributed of type I, if the CDF can be written as the following integral

$$\int_0^{F(x)^{\alpha}} r(t) dt = R(F(x)^{\alpha})$$

Remark 3.4: If the continuous random variable T has support $[a,\infty)$ with $a\geq 0$ we can $\mathrm{take}\,W(x)\!=\!-\log\left(1-x^{\alpha}\right)$ or $W(x)\!=\!\frac{x^{\alpha}}{1-x^{\alpha}}$ where $\alpha>0$. In particular, we will say arandom variable $\mathrm{B}^{x}T-X(W)$ distributed of type II, if the CDF can be written as either one of the following integrals

$$\int_0^{-\log\left(1-F(x)^\alpha\right)} r(t) dt = R\left(-\log\left(1-F(x)^\alpha\right)\right)$$

0r

$$\int_{0}^{F(x)^{\alpha}} r(t) dt = R \left(\frac{F(x)^{\alpha}}{1 - F(x)^{\alpha}} \right)$$

Remark 3.5: If the continuous random variable T has support $(-\infty,\infty)$ we can take $W(x) = \log\left(-\log\left(1-x^{\alpha}\right)\right)$ or $W(x) = \log\left(\frac{x^{\alpha}}{1-x^{\alpha}}\right)$, where $\alpha > 0$. In particular, we will say a random variable B is T - X(W) distributed of type III, if the CDF can be written

as either one of the following integrals

$$\int_{-\infty}^{\log(-\log(1-x^{\alpha}))} r(t) dt = R\left(\log(-\log(1-x^{\alpha}))\right)$$

or

$$\int_{-\infty}^{\log\left(\frac{F(x)^{\alpha}}{1-F(x)^{\alpha}}\right)} r(t) dt = R \left(\log\left(\frac{F(x)^{\alpha}}{1-F(x)^{\alpha}}\right)\right)$$

Remark 3.6: By differentiating the RHS of the equations in Remark 3.3, Remark 3.4, and Remark 3.5, respectively, we obtain the PDF's of the class of T - X(W) distributions of type I, II and III, respectively.

Background on Zubair-G family of distributions

Definition 3.7: [2] A random variable B* is said to be Zubair-G distributed if the CDF is given by

$$F(x;\alpha,\xi) = \frac{e^{\alpha G(x;\xi)^2} - 1}{e^{\alpha} - 1}$$

Where $\alpha, \xi > 0, x \in R$ and G is the CDF of the baseline distribution by differentiating the CDF in the above definition we obtain the PDF of the Zubair-G class of distributions as

$$f(x;\alpha,\xi) = \frac{2\alpha g(\alpha;\xi)G(\alpha;\xi)e^{\alpha g(\alpha;\xi)^2}}{e^{\alpha}-1}$$

Where $\alpha, \xi>0, x\in R$, G is the CDF of the baseline distribution, and g is the PDF of the baseline distribution

The New Family of Distributions

The Ampadu-G family of distributions

Definition 4.1: Let $\lambda > 0, \xi > 0$ be a parameter vector all of whose entries are positive, and $x \in R$. A random variable X will be said to follow the Ampadu-G family of distributions if the CDF is given by

$$F(x;\lambda,\xi) = \frac{1 - e^{-\lambda G(\alpha;\xi)^2}}{1 - e^{-\lambda}}$$

and the PDF is given by

$$F(x;\lambda,\xi) = \frac{2\lambda g(x;\xi)G(x;\xi)e^{-\lambda G(\alpha;\xi)^2}}{1-e^{-\lambda}}$$

where the baseline distribution has CDF $G(x,\xi)$ and PDF $g(x,\xi)$

Generalized $A_T - X(W)$ Family of Distributions of type I

Definition 4.2: Assume the random variable T with support [0, 1] has CDF $G(t; \xi)$ and

PDF $g(t;\xi)$. We say a random variable S is generalized $A_T - X(W)$ distributed of type I if the CDF can be expressed as the following integral

$$\int_{0}^{F(x,w)^{\beta}} \frac{2\lambda g(t;\xi)G(t;\xi)e^{-\lambda G(t;\xi)^{2}}}{1-e^{-\lambda}}dt = \frac{1-e^{-\lambda G(F(x,w)^{\beta};\xi)^{2}}}{1-e^{-\lambda}}$$

Where $\lambda, \xi, \beta > 0$ and the random variable X with parameter vector! has CDF F(x, w) and PDF f(x, w)

Remark 4.3: If $\beta = 1$ in the above definition we say S is $A_r - X(W)$ distributed of type I

Generalized $A_r - X(W)$ Family of Distributions of type II

Definition 4.4: Assume the random variable T with support $[a,\infty)$ has CDF $G(\mathbf{t},\xi)$ and

PDF $g(x,\xi)$. We say a random variable S is generalized A_T -X(W) distributed of type II if the CDF can be expressed as either one of the following integrals

$$\int_{0}^{-\log(1-F(x,w)^{\beta})} \frac{2\lambda g(t;\xi)G(t;\xi)e^{-\lambda G(t;\xi)^{2}}}{1-e^{-\lambda}}dt = \frac{1-e^{-\lambda G(-\log(1-F(x,w)^{\beta});\xi)^{2}}}{1-e^{-\lambda}}$$

0r

$$\int_{0}^{\frac{F(x,w)^{\beta}}{1-F(x,w)^{\beta}}} \frac{2\lambda g(t;\xi)G(t;\xi)e^{-\lambda G(t;\xi)^{2}}}{1-e^{-\lambda}} dt = \frac{1-e^{-\lambda G\left(\frac{F(x,w)^{\beta}}{1-F(x,w)^{\beta}}\right)^{2}}}{1-e^{-\lambda}}$$

where $\lambda, \xi, \beta > 0$ and the random variable X with parameter vector! has CDF F(x, w) and PDF f(x, w)

Remark 4.5: If $\beta = 1$ in the above definition we say S is $A_T - X(W)$ distributed of type II

Generalized $A_T - X(W)$ Family of Distributions of type III

Definition 4.6: Assume the random variable T with support $(-\infty,\infty)$ has CDF $G(t;\xi)$ and PDF $g(t;\xi)$. We say a random variable S is generalized $A_T - X(W)$ distributed of type III if the CDF can be expressed as either one of the following integrals

$$\int_{-\infty}^{\log\left(-\log\left(1-F(x,w)^{\theta}\right)\right)} \frac{2\lambda g(t;\xi)G(t;\xi)e^{-\lambda G(t;\xi)^{2}}}{1-e^{-\lambda}}dt = \frac{1-e^{-\lambda G\log\left(\left(-\log\left(1-F(x,w)^{\theta}\right);\xi\right)^{2}\right)}}{1-e^{-\lambda}}$$

or

$$\int_{-\infty}^{\log\left(\frac{F(x,w)^{\beta}}{1-F(x,w)^{\beta}}\right)} \frac{2\lambda g(t;\xi)G(t;\xi)e^{-\lambda G(t;\xi)^{2}}}{1-e^{-\lambda}}dt = \frac{1-e^{-\lambda G\log\left(\left(\frac{F(x,w)^{\beta}}{1-F(x,w)^{\beta}}\right)^{2}\right)}}{1-e^{-\lambda}}$$

where $\lambda, \xi, \beta > 0$ and the random variable X with parameter vector w has CDF F(x, w) and PDF f(x, w)

Remark 4.7. If $\beta = 1$ in the above definition, we say S is $A_r - X(W)$ distributed of type III

Practical Application to Real-life Data

Illustration of Ampadu-G family of distributions

We consider the data set [5] which is on the breaking stress of carbon fibers of 50 mm in length. We assume the baseline distribution is Weibull distributed, so that for x, a, b > 0, the CDF is given by

$$G(x;a,b) = 1 - e^{-\left(\frac{x}{a}\right)^a}$$

and the PDF is given by

$$g(x;a,b) = \frac{ae^{-\left(\frac{x}{a}\right)^{a}} \left(\frac{x}{a}\right)^{a-1}}{b}$$

Theorem 5.1. The CDF of the Ampadu-Weibull distribution is given by

$$F(x,a,b,\lambda) = \frac{1 - e^{-\lambda \left(1 - e^{\left(\frac{x}{a}\right)^{\alpha}}\right)^{2}}}{1 - e^{-\lambda}}$$

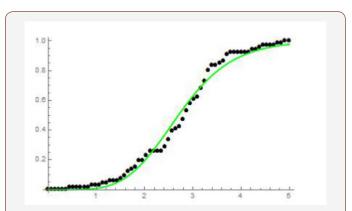
Where $x, a, b, \lambda > 0$

Proof. Since the baseline distribution is Weibull distributed, then for x,a,b>0 , the CDF is given by

$$G(x;a,b) = 1 - e^{-\left(\frac{x}{a}\right)^a}$$

So the result follows from Definition 4.1

Remark 5.2: If a random variable R is Ampadu-Weibull distributed, we write $R \sim AW(a,b,\lambda)$ (Figure 1).



The parameter estimates in the AW distribution were obtained using the software MATHEMATICA

Figure 1: The CDF of AW (2.43975, 3.13163, 2.42517) fitted to the empirical distribution [5].

Illustration of $A_T - X(W)$ Family of Distributions of type I

The data set refers to the remission times (in months) of a random sample of 128 bladder cancer patients studied in [6]. We assume the random variable T follows the Burr X (BX) family of distributions so that for t, a, b > 0, the CDF is given by

$$G(t;a,b) = (1-e^{-a^2t^2})^b$$

and the PDF is given by

$$g(t;a,b) = 2a^2bte^{-a^2t^2} (1-e^{-a^2t^2})^{b-1}$$

We assume the random variable X is Lomax distributed so the for x, c, d > 0, the CDF is given by

$$F(x,c,d) = 1 - \left(\frac{x}{c} + 1\right)^{-d}$$

and the PDF is given by

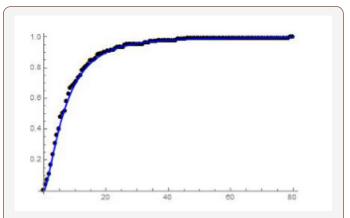
$$f(x,c,d) = \frac{d\left(\frac{x}{c} + 1\right)^{-d-1}}{c}$$

Now we consider Remark 4.3 in Definition 4.2, then we get the following

Theorem 5.3: The CDF of the $A_{Burr}X$ -Lomax family of distributions, for $x, a, b, c, d, \lambda > 0$ is given by

$$V(x;a,b,c,d,\lambda) = \frac{1 - \exp\left(\lambda \left(-\left(1 - e^{-a^2\left(1 - \left(\frac{x}{c} + 1\right)^{-d}\right)^2\right)^{2b}\right)\right)}{1 - e^{-\lambda}}$$

Remark 5.4: If a random variable W has CDF given by the ABurrX – Lomax family of distributions, we write $W \sim ABXL(a,b,c,d,\lambda)$ (Figure 2).



The parameter estimates in the ABXL distribution were obtained using the software MATHEMATICA

Figure 2: The CDF of ABXL(1.62958, 0.387959, 10.1454, 0.128371, 25.8032) fitted to the empirical distribution of the bladder cancer patients data [6].

Illustration of $A_T - X(W)$ Family of Distributions of type II

The second data set is on 30 successive March precipitation (in inches) observations obtained from [7] and recorded in Section 7 of [8]. We assume the random variable T with support $\left[0,\infty\right)$ follows the Weibull distribution, so that for t > 0, and b, c > 0, the CDF is given by

$$G(t;b,c) = 1 - e^{-\left(\frac{t}{c}\right)^b}$$

and the PDF is given by

$$g(t;b,c) = \frac{be^{-\left(\frac{x}{c}\right)^{b} - \left(\frac{x}{c}\right)^{b-1}}}{c}$$

We also assume the random variable X follows the Rayleigh distribution, so that for x, a > 0, the PDF is given by

$$f(x;a) = \frac{xe^{-\frac{x^2}{2a^2}}}{a^2}$$

and the CDF is given by

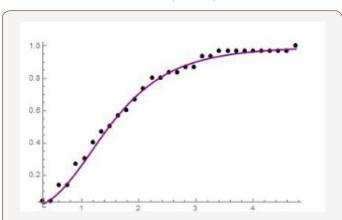
$$F(x;a) = 1 - e^{-\frac{x^2}{2a^2}}$$

Considering Remark 4.5 in the first integral of Definition 4.4, we get the following Theorem 5.5. The CDF of the AWeibull – Rayleigh family of distributions of type II is given by

$$1 - \exp\left(\lambda \left(-\left(1 - e^{-\left(\frac{\log\left(\frac{x^2}{e^{2a^2}}\right)^b}{c}\right)^2\right)}\right)$$

$$H(x; a, b, c, \lambda) = \frac{1 - e^{-\lambda}}{1 - e^{-\lambda}}$$

Remark 5.6: When a random variable J* has CDF given by Theorem 3.5, we write $J^* \sim AWR(a,b,c,\lambda)$ (Figure 3).



The parameter estimates in the AWR distribution were obtained using the software MATHEMATICA

Figure 3: The CDF of AWR(1.90154, 0.638893, 0.887386, 4.37718) fitted to the empirical distribution of the precipitation data [8].

Illustration of $A_T - X(W)$ Family of Distributions of type III

In this application we consider the data set in [9] from [10], on the breaking stress of carbon fibers of 50 mm in length. We assume the random variable T with support $(-\infty,\infty)$ follows the Cauchy distribution, so that for t, a 2 R, b > 0, the CDF is given by

$$G(t;a,b) = \frac{\tan^{-1}\left(\frac{t-a}{b}\right)}{\pi} + \frac{1}{2}$$

and the PDF is given by

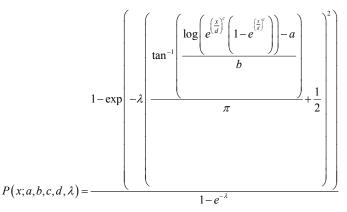
$$g(t;a,b) = \frac{1}{\pi b \left(\frac{(x-b)^2}{b^2} + 1\right)}$$

We also assume the random variable X follows the Weibull distribution, so that for x > 0, and c, d > 0, the CDF is given by

$$F(x;c,d) = 1 - e^{-\left(\frac{x}{d}\right)^c}$$

and the PDF is given by now considering Remark 4.7 in the second integral of Definition 4.6, we get the following

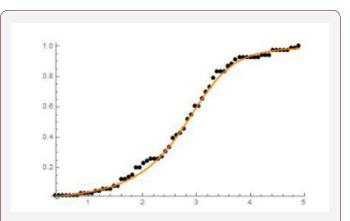
Theorem 5.7: The CDF of the A_{Cauchy} – Weibull family of distributions of type III is given by



Where x; a, b, c, d, $\lambda > 0$

Remark 5.8: By differentiating the CDF of the A_{Cauchy} -Weibull family of distributions of type III, the PDF can be obtained

Remark 5.9: When a random variable N* has CDF given by Theorem 5.7, we write (Figure 4) $N^* \sim ACW(a,b,c,d,\lambda)$



The parameter estimates in the ACW distribution were obtained using the software MATHEMATICA

Figure 4: The CDF of ACW (0.0364987, 2.51544, 6.13094, 3.16873, 3.4696) fitted to the empirical distribution of the data on breaking stress of carbon fibers of 50 mm in length [9].

Acknowledgement

None.

Conflict of Interest

No conflict of interest.

References

 Ayman Alzaatreh, Carl Lee, Felix Famoye (2013) A new method for generating families of continuous distributions. METRON 71: 63-79.

- Ahmad Z (2018) The Zubair-G Family of Distributions: Properties and Applications. Ann Data Sci: 1-14.
- 3. Ristic MM, Nadarajah S (2014) A new lifetime distribution. J Stat Comput Simul 84: 135-150.
- 4. Mahmoudi E, Sepahdar A (2013) Exponentiated Weibull-Poisson distribution: Model, properties and applications. Math Comput Simul 92: 76-97.
- Ayman Alzaatreh, Carl Lee, Felix Famoye (2014) T-normal family of distributions: a new approach to generalize the normal distribution. Journal of Statistical Distributions and Applications 1: 16.
- 6. Lee ET, Wang JW (2003) Statistical Methods for Survival Data Analysis ($3^{\rm rd}$ ed.), Wiley, New York, USA.

- 7. Hinkley D (1977) On quick choice of power transformation. Applied Statistics 26(1): 67-69.
- 8. Muhammad Ahsan ul Haq (2016) Transmuted Exponentiated Inverse Rayleigh Distribution. J Stat Appl Pro 5(2): 337-343.
- Maalee Almheidat, Felix Famoye, Carl Lee (2015) Some Generalized Families of Weibull Distribution: Properties and Applications. International Journal of Statistics and Probability 4(3).
- 10. Nicholas MD, Padgett WJ (2006) A bootstrap control for Weibull percentile. Quality and Reliability Engineering International 22(2): 141-151