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Introduction
Mating design involving multi–allele cross m (≥2) lines play 

very important role to study the genetic properties of a set of 
inbred lines in plant breeding experiments. A most common mating 
design in genetics is the diallel cross which consist ofv=p(p-1)/2 
crosses of p inbred lines such that the crosses of the type (i × j) = (j 
× i) for i,j = 1,2, …, p.This type of mating design is called complete 
diallel cross (CDC) method 4 of Griffing[2]. The concept of CDC can 
be easily extended to double cross designs. A double cross design 
is obtained by crossing two unrelated F1 hybrids symbolized as (i 
×j) and (k × l), where i ≠j≠k ≠l ≠i, are 4 parents and (i× j) and (k × l) 
are two F1’s[3].

Let nc denote the total number of crosses (experimental units) 
involved in an m-allele cross experiment, where m=2 or 4. Generally 
double cross experiments are conducted using a completely 
randomized design (CRD) or a randomized complete block (RCB) 
design involving some or all nc crosses as treatments. The number 
of crosses in such a mating design increases rapidly with increase 
in the number of lines. It leads to an overall inefficient experiment. 
It is for this reason that the use of incomplete block design as 
environment design is needed for double cross experiments [3].

Parsad et al. [4] constructed optimal block designs for double 
cross experiments by using balanced incomplete block designs 
and nested balanced incomplete block designs of Morgan et al. [5].  

 
Sharma & Tadesse [6] constructed double cross designs for even 
and odd value of p by using initial block of unreduced balanced 
incomplete block designsgiven by Bose et al. [7] and initial block of 
row –column designs given byGupta & Choi [8], respectively.

In this paper we have used nested balanced incomplete block 
designs of Dey et al. [9] and Morgan et al. [5] for the construction 
of three seriesof optimal block and row-column designs for partial 
double cross experiment. The parameters of ourproposed optimal 
block and row-column designs for partial double cross experiments 
are different from Parsad et al. [4] designs. We have used those 
designs of Morgan et al [5] for the construction of partial double 
cross experiment which Parsadet al. [4] did not use.In our proposed 
designs every cross is replicated equal number of times in a design.
We have considered the model that includes the gca effects, apart 
from block effects, but no specific combining ability effects.

Some definitions

a.	 Definition 2.1: The double cross has been defined by Rawlings 
and Cockerham (1962 b) as a cross between two unrelated F1 

hybrids, say denoted by (i ×j) and (k× l), wherei ≠j ≠k ≠ l ≠i, 
are denoting the grandparents and no two of them are same. 
Ignoring reciprocal crosses, with p grandparents, there will be 
3 








4
p double crosses.
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b.	 Definition 2.2:An arrangement ofv treatments each replicatedr* 
times in two systems of blocks is said to be a nested balanced 
incomplete design (NBIBD) with parameters (v, b1, k1, r*, λ1, b2, 
k2, λ2, m) if 

•	 The second system is nested within the first, with each block 
from the first system, containing exactly m blocks from the 
second system (sub blocks);

•	 ignoring the second system leaves a balanced incomplete block 
design with parameters v, b1, k1, r*, λ1;

•	 ignoring the first system leaves a balanced incomplete block 
design with parametersv, b2, k2, r*, λ2.

The following parametric relations hold for a nested balanced 
incomplete block design:

(i)	 v r*= b1 k1=m b1 k2=b2 k2

(ii)	 (v-1) λ1= (k1 -1) r*

(iii)	 (v-1) λ2= (k2 -1) r*

Universal optimality of designs for 1-way- heterogeneity

Following Parsad et al. [4], let dbe a block design for an m-allel 
cross experiment involving p inbred lines, b blocks each of size 
k. This means that there are k crosses in each of the blocks of d. 
Further,let rdtand sdi denote the number of replication of the tth 
cross and the number of replications of the ith line in different 
crosses,respectively, in d [t = 1,2, …, nc; i = 1,2,…,p] . Evidently, ∑rt= 
bk, ∑si= mbk = mn and n = bk, the total number of observations. We 
also considered this and we took the following additive model for 
the observations obtained from design d.

1 2  m ′ ′= + ∆ + ∆ +ny 1 g b e …….(3.1)

where yis an n×1 vector of observations, 1is an n×1 vector 
of ones, '

1∆  is an n × p design matrix for lines '
2∆  and is an n × b 

design matrix for blocks, that is, the (h,l)thelement of '
1∆  ( also of 

'
2∆  ) is 1 if thehth observation pertains to the lthline (also of block) 

and is zero otherwise. µ is a general mean, g is a p × 1 vector of line 
parameters, β is a b × 1 vector of block parameters and e is an n 
× 1 vector of residuals. It is assumed that vector βis fixed and e is 
normally distributed with mean 0andVar (e) = σ2IwithCov (β, e)= 0, 
where Iis the identity matrix of conformable order.

For the analysis of proposed design d, the method of least 
squares leads to the following reduced normal equations for 
estimating the linear functions of the gca effects of lines under 
model (3.1).

( ) i jd c− ′= − =1
d d d dC G N K N (i,j= 1,2,…, p)(3.2)

 where Gd = 1∆ 1∆′ = (gdii´), gdii = sdiand for i≠i´ ,gdii´ is the number 
of crosses in d in which the linesi and i´ appear together . Nd = 1∆  

'
2∆ = (ndij), ndijis the number of times the line i occurs in block jof 

dand 

Kd = 2∆
'
2∆ is the diagonal matrix of block sizes.

A design d will be called connected if and only if rank (Cd) = p 
-1, or equivalently, if and only if all elementary comparison among 
gca effects are estimable using d. We denote byD(p,b,k), the class 
of all such connected block design {d} with p lines, b blocks each of 
size k. To prove optimality of design d,we need the following well 
known lemma [10].

Lemma 3.1 For given positive integers s and t, the minimum 
of ∑

=

s

i
in

1

2 subject to 
1

s

i
i

tn
=

=∑ , where ni’s are non-negative integers, is 
obtained when t – s [t/s] of the ni’s are equal to [t/s]+1 and s - t + 
s[t/s], where [z] denotes the largest integer not exceeding z. The 
corresponding minimum of

∑
=

s

i
in

1

2 is t (2[t/s] +1) – s [t/s]([t/s] +1)

Theorem 3.1:For any design d ε D (p, b, k)

tr (Cd)≤k-1b{m k (k -1-2x) + px (x+1)}

where x= [mk/p] and for a square matrix A, tr (A) stands for the 
sum of the diagonal elements of A.

Proof.For any design d ε D (p, b, k), we have 

( ) 1 2

1 1

p p b

di dij
i i j

t s k nr −

= = =

= −∑ ∑∑dC   1 2

1 1
   

p b

dij
i j

k nmb k −

= =

= − ∑∑

Now, since 
2

1 1

p b

dij
i j

n kmb
= =

=∑∑ , using Lemma 3.1

( ) ( ){ }2

1 1
 2 1  – 1  

p b

dij
i j

bn m k x px x
= =

≥ + +∑∑ where [mk/p].

Hence 

tr(Cd)≤mbk– k-1b{m k(2x +1) – p x (x+1)}

= k -1b {m k (k-1 -2 x) + p x (x+1)}

By Lemma 3.1, the above equality is attained if and only if ndij= 
x or x+1, for i =1,2, . . ., p; j = 1, 2, . . ., b

Theorem 3.1:For any design d ε D (p, b, k)

tr (Cd)≤ k-1b{ mk (k -1-2x) + p x (x+1)

where x = [mk/p] and for a square matrix A, tr (A) stands for the 
sum of the diagonal elements of A.

Kiefer [11] showed that a design is universally optimal in a 
relevant class of competing design if (i) the information matrix 
( the Cd– matrix) of the design is completely symmetric in the 
sense that Cd has all its diagonal elements equal and all of its off- 
diagonal elements equal, and (ii) the matrix Cd has maximum trace 
in the class of competing designs, that is, such a design minimize 
the average variance of the best linear unbiased estimators of 
all elementary contrasts among the parameters of interest i.e. 
the general combining ability in our context. On the basis of the 
theorem 3.1 and Kiefer criterion of the universal optimality, we can 
state Theorem 3.2.

http://dx.doi.org/10.33552/ABBA.2018.01.000509
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Theorem 3.2:For any design d* ε D (p, b, k) be a block design for 
m-allel crosses satisfying

(i)	 tr (Cd*)=k--1 b{ mk (k -1-2x) + p x (x+1)

(ii)	 Cd* = (p-1)-1k--1 b {m k (k -1-2x) + p x (x+1)} (Ip –1p 1′p/ p) 
is completely symmetric.

where Ip is an identity matrix of order p and 1p1′p is a p × p 
matrix of all ones. Furthermore, using d* all elementary contrasts 
among gcaeffects are estimated with variance 

[2b-1(p-1)k/ {m k (k-1-2x) + p x(x+1)}] σ2.

Then d* is universally optimal in D (p, b, k), and in particular 
minimizes the average variance of the best linear unbiased 
estimator of all elementary contrasts among the general combining 
ability effects.

Universal optimality of designs for 2-way- heterogeneity 

Consider an m-allel cross involving p lines in a row-column 
design with k rows and b columns. The model can be written as 
given below

'
1

' '
2 3µ τ β γ+ ∆= + ∆ +∆ +nY 1 e  (4.1)

where Yis an n × 1 vector of observed responses, µ is the general 
mean, ,τ β  and γ  are the column vectors of pgcaparameters, krow 
effects and b column effects, respectively, ' ' '

1 2 3(n ), ( n k), ( n b)p∆ × ∆ × ∆ ×  
are the corresponding design matrices, respectively and e denotes 
the vector of independent random errors having mean 0 and 
covariance matrix nI2σ .

Let 21 1
'

dN = ∆ ∆  be ap × k incidence matrix of lines versus rows 
and 

32 1
'

dN = ∆ ∆  be a p × b incidence matrix of treatments versus 
columns and '

2 3 k b∆ ∆ = 1 1 . Let rdldenote the number of times the lth 
cross appears in the design d,l = 1, 2,…,v and similarlysdi denote the 
number of times the ith lineoccurs in thedesign d, i = 0, 1, . . . p-1. 
Under (4.1), it can be shown that the reduced normal equations for 
estimating the treatment effects, after eliminating the effect of rows 
and columns, are

                                                  ˆdC Qτ = (4.2)

where 1 1 2 2
1 1

1
d d

d d d d d d
d

s sC G N N N N
b k s

′
′ ′= − − +

′

Q = T – 1/b Nd1R – 1/k Nd2C + (G/bk) sd,

( ) ( )1 1 1 .., , .d dii d dijG g N n n′′= ∆ ∆ = =

is the number of times the line i occurs in row jof d, 
( )2 .. ...,d di t i tN n n=  is the number of times cross ioccurs in column 

t.Q is a p × 1 vector of adjusted treatments (crosses) total, T is a 
p × 1 vector of treatments (lines) totals, R is a k × 1 vector of rows 
totals, Cis a b ×1 vector of columns totals, and G is a grand total of 
all observations.

We use the following theorems ofPrasadet al. [4] to prove 
optimality of the proposed designs.

Theorem 4.1: For any design d Ɛ D1(p, b, k), trace ( Cd)will be 
maximum when

(i)	 ..
..

di
dij

nn
k

=  ie., the design is orthogonal with respect to the lines 
vs rows as blocks classification or a row –regular setting with 
respect to lines.

(ii)	 . 1di tn xorx= +  where int mkx
p

 
=  

   ie., the lines appear either x or 
x=1 time in columns as blocks classification, where m = 2 or 4.

Theorem 4.2:Let d* Ɛ D1(p, b, k) be a row – column design 
satisfying 

a.	 trace (Cd*) =k-1b{m k(k-1-2x) + p x (x+1)

b.	 Cd*is completely symmetric.

Then d* is universally optimal in D1 (p, b, k)

Now we will show a connection between optimal block and row-
column design for optimal partial double cross design with nested 
balanced incomplete block designs of Preece (1967).Consider now 
a NBIB design d obtained by developing mod (v) t1initial blocks, 
each sub-divided into t2 sub-blocks. The parameters of such an NBB 
design are v= p, b1= vt1, b2= b1 t2 , k1= 2t2, r*, k2 =2. If we identify the 
treatments of d as lines of a diallel experiment and perform double 
crosses among the lines appearing in the same sub block of dand 
arrange these sub-blocks into one bigger block and develop mod 
(v), we get a design d* for a double cross experiment involving p 
lines with b2crosses arranged in b = b1/2 blocks.Each double cross 
is replicated once. Such a design d* belongs toD (p, b, k). For such a 
design nd*ij = 0 or 1for i = 1, 2, . . . ,p, j = 1, 2, . . . , b. and 

Cd*= (p-1)-1[ (p-1) (p-5)Ip –(3p-7)1p1’p](4.3)

Clearly Cd* given by (4.3) is completely symmetric and tr (Cd*) 
= p (p-5) which equals the equality given in theorem 4.2:Thus the 
design d* is optimal in D1 (p, b, k) and using d* each elementary 
contrast among gca effects is estimated with a variance

2 σ2/ p (p-5)(4.4)

If p is even then the NBIB design has the following parameters.

v= p, b1= (v-1) t1, b2= rb1 k2 , k1= 2r k2, r*, k2=2., where r is the 
numberof replication of double cross. If we perform the same 
procedure given above, we get a design d* for a partial double cross 
experiment involving p lines with b2 crosses arranged in b = b1/
t1blocks. Such a design d*εD (p, b, k); also, for such a design nd*ij= 1 
or 2for i = 1, 2, . . . ,p, j = 1, 2, . . . , b. and

Cd* = (r t1)-1[r2 (p-1) (t1-1)Ip – r2 (p- t1-1)1p1’p](4.5)

Clearly Cd* given by (4.5) is completely symmetric and tr (Cd*) 
= p (p-5) which equals the equality given in theorem 3.2. Thus, the 
design d* is optimal in D (p, b, k) and using d* each elementary 
contrast among gca effects is estimated with a variance

2 σ2 r(p-1) (t1-1)/ t1(4.6)

Hence, we state the following theorems.
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Theorem 4.3:The existence of a nested balanced incomplete 
block design d with parameters

v= p, b1= vt1, b2= b1t2, k1= 2t2, r*, k2=2 ,where p is odd, implies 
the existence of optimal block and row-column designs for partial 
double cross.

Theorem 4.4:The existence of a nested balanced incomplete 
block design d with parameters

v= p, b1= (v-1) t1, b2= rb1 k2, k1= 2r k2, r*, k2=2,wherep iseven, 
implies the existence of optimal block design for partial double 
cross.

Method of Construction
Series 1: Let p = 4m+1, m ≥ 1 be a prime or a prime power and 

x be a primitive element of the GF (p). Consider the following m 
initial blocks.

( ) ( ){ }2 3, , , , 0,1, 2,.... 1i i m i m i mx x x x i m+ + + = −

As shown by Dey et al. [9], these initial blocks, when developed 
in the sense of Bose [7], give rise to a nested balanced incomplete 
block design with parameters v = p = 4m +1,

 k1= 4, b1= m (4m+1), k2 =2. Arrange the following m initial 
blocks into single block 

2

3

,
, 0,1, 2,.... 1

,

i i m

i m i m

x x
i m

x x

+

+ +

 
= − 

 
By making pair of crosses in a single block and developing mod 

(p), we get double cross design with parameters p = 4m+1, b = 
4m+1, k = k1/2.

Note1: For construction of double cross design it is necessary 
that the block size of a single block must be an even number i.e. m 
must be a multiple of 2.

The procedure to obtain the above designs has been explained 
by the following illustrative example.

Example 1:If we let m = 2, we get the following two blocks.









++++ )1,22()2,12(

)2,()2,1(
xxxx
xx

We can now write both blocks in a single block as given below.



















++

++

)1,22(
)2,(

)2,12(
)2,1(

xx
xx
xx

where xis a primitive element of GF(32).Now cross the 
elements of the individual block and put these crosses in a single 
block. Adding successively the non-zero elements of GF (32) to 
the contents of the single block, we obtain block and row- column 
design for partialdouble cross experiment with parameters p= 9, 
b= 9, k= 2.The design is exhibited below, where the lines have been 
relabelled 1-9, using the correspondence 0→1, 1→2, 2→3, x→4, 
x+1→5, x+2→6, 2x→7, 2x+1→8, 2x+2→9:

	 Partial Double Cross Row-Column Design

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6 7 8 9

1

2

2 3 6 8 1 3 4 9         1 2 5 7 5 6 2 9 4 6 3 7 4 5 1 8 8 9 3 5 7 9 1 6 7 8 2 4
4 7 5 9          5 8 6 7 6 9 4 8 1 7 3 8 2 8 1 9 3 9 2 7 1 4 2 6 2 5 3 4 3 6 1 5

× × × × × × × × × × × × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × × × × × × × × × × × × × ×

B B B B B B B B B
R
R

Series 2: Let p = 6m+1, m ≥ 1 be a prime or a prime power and 
x be a primitive element of the Galois field of order p. Consider the 
initial blocks

3 4 2 5{( , ), ( , ), ( , )}, 0,1, 2,... 1.i i m i m i m i m i mx x x x x x i m+ + + + + = −

Dey et al. (1986)[4]showed when these initial blocks developed 
over mod (p), give a solution of a nested incomplete block design 
with parameters v = p = 6m+1, b1 = m(6m+1), k1 =6, k2 = 2, λ2= 1.

We can then arrange the above initial blocks into a single block 
as given below 

















−=
++

++

+

1,...,1,0,
,(

),(
),(

)52

4

)3

mi
xx
xx

xx

mimi

mimi

mii

Example 2: Let m = 2. Then we get the following two initial 
blocks. (1,12) (2,11)

(4,9) (8,5)
(3,10) (6,7)

 
 
 
  

We can arrange these two blocks in a single block as given 
below. (1,12)

(2,11)
(4,9)
(8,5)
(3,10)
(6,7)

 
 
 
 
 
 
 
 
 

Now performing crosses in pairs and developing these crosses 
over mod(p), we obtain block and row-column design with 
parameters p =13, b = 13 and k =3

              

                                                 

(1,12)
(4,9)
(3,10)
(2,11)
(8,5)
(6,7)

 
 
 
 
 
 
 
 
 

	 Partial Double Cross Row-Column Design

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2 3 4 5 6

2

3

1 12 4 9 2 0 5 10 3 1 6 11 4 2 7 12 5 3 8 0 6 4 9 1
3 10 2 11  4 11 3 12 5 12 4 0 6 0 5 1  7 1 6 2 8 2 7 3
8 5 6 7 9 6 7 8 10 7 8 9 11 8 9 10 12 9 10 11 0 10 11 12

× × × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × × × × ×

1B B B B B B
R
R
R

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2

3

8 9 10 11 12 13

7 5 10 2 8 6 11 3 9 7 12 4 10 8 0 5 11 9 1 6 0 10 2 7 1 11 3 8
9 3 8 4 10 4 9 5 11 5 10 6 12 6  11 7 0 7 12 8 1 8 0 9 2 9 1 10

1 11 12 0 2 12 0 1 3 0 1 2 4 1 2 3 5 2 3 4  6 3 4 5 7 4 5 6

× × × × × × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × × × × × × × ×

7B B B B B B B
R
R
R

Series 3: Let p = 2m +1, m≥ 2 be a prime or a prime power and 
considerthe following m blocks 

(0, 2m), (1, 2m-1), (2, 2m-2), . . ., (m-1, m+1) mod (2m+1) 

Example 3:If we let m= 4, then the single block will be as given 
below. 



















)5,3(
)6,2(
)7,1(
)8,0(
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Now applying the procedure given in example 1, we can 
obtain an optimal block design for double cross experiment with 
parameters p = 9,k= 2, b = 9.

Note 2:The m blocks given in series 3 form a nested balanced 
incomplete block design with parameters v = p = 2m +1, b1= m, k1= 
m(2m+1), k2 = 2, λ2= 1 given by Dey et al.[9].

Example: 4Consider MRP 33 (2001) design with initial blocks 
given by

[{(∞  0) (5 10)}{(1 2) (4 8)}{(6 9) (7 13)}{11 3) (12 14)}] mod 15.

Arranging these initial blocks in a single block and performing 
crosses between sub- blocks anddeveloping mod(15), treatment 
∞  is invariant under cyclic development of the initial blocks and 
we get optimal partial double crossblock design with parameters p 
= 16, b =15, and k =4.

( )5

( 0) (5 10)
(1 2) (4 8)

(6 9) (7 13)
(11 3) (1

1

2 14

 

)

mod

∞× × × 
 × × × 
 × × ×
 × × × 

Discussion
Universally optimal partial double cross design with p≤16, s 

≤30 obtained by the above method from NBIB designs of Morgan, 
Preece& Rees [5], are listedin the following Table 1. These are the 
designs other than the designs catalogued by Das, Dey & Dean [12]
and Parsad, et al.[4]. These are the new designs and successfully 
can be used in agricultural experimentation.

Table 1: Universally optimal block design for double cross with p ≤ 16, s 
≤ 30 generated by using NBIB designs of Morgan et al. [5].

S.No p b k Source

1 16 15 4 MPR 33

2 12 33 5 MPR53

3 9 9 2 MPR 5w

4 9 9 2 MPR8

6 11 11 5 MPR49

7 13 13 3 MPR20w

8 13 13 3 MPR 21

9 13 13 3 MPR 23

10 14 14 7 MPR57

11 15 16 4 MPR33w

12 15 15 7 MPR59

13 13 39 2 MPR55

14 15 35 3 MPR62

Conclusion
We have presented a method of construction of three series 

of optimal block and row-column designs for partial double cross 
by using nested balanced incomplete block designs. Our proposed 
optimal block and row-column designs for partial double cross are 
new and not available in statistical literature.
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